
Porting and Modifying the Mach ���
Microkernel

Third USENIX MACH Symposium
Santa Fe� New Mexico

April ��� ����

Bob Wheeler
Carnegie Mellon University

Carnegie
Mellon

�

Copyright c����� Carnegie Mellon University

All Rights Reserved�

Permission to use� copy� modify and distribute this documentation is

hereby granted� provided that both the copyright notice and this

permission notice appear in all copies� derivative works or modi�ed

versions� and any portions thereof�

CARNEGIE MELLON ALLOWS FREE USE OF THIS

DOCUMENTATION IN ITS �AS IS� CONDITION� CARNEGIE

MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY

DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS

DOCUMENTATION�

Carnegie
Mellon

	

Overview

Part I � Getting Started
Source Code Layout
Build Tools
Miscellaneous routines
Debugging

Part II � Virtual Memory
Overview of Mach Virtual Memory
The pmap module

Part III � Saving and Restoring State
Kernel entry and Exit
Traps� interrupts and system calls
Continuations

Part IV � User Code
Libmach
Cthreads
Emulator library
BSD single server

Carnegie
Mellon

�

Part I � Getting Started

Sources of Information

Source Code Layout

C Shell Tricks

Build Magic

Build Tools
Con�g
MiG � The Mach Interface Generator
Makeboot

Getting Started

Kernel Bootstrap

Miscellaneous Routines

Debugging

Carnegie
Mellon

Sources of Information

Technical questions
mach��cs�cmu�edu
Read by CMU� OSF� and �		 other people
To be added contact mach��request�cs�cmu�edu

Administrative questions
mach�cs�cmu�edu
Read by Mach distribution people

Documentation

All documentation mentioned is available via
anonymous ftp from mach�cs�cmu�edu in the
doc directory

Carnegie
Mellon

�

Source Code Layout

mach3

obj release src

parisc_mach parisc_mach

mk uxuser bin includeetc lib special

mk uxuser

build_tools

obj mirror of src area where
object �les are placed

release �nal release area
src source area
build tools ode make� gcc� gmake

mk micro kernel
user mach user programs
ux single server
parisc mach machine dependent area for

Hewlett�Packard pa�risc machine

Carnegie
Mellon

�

MK Source Code Layout

libmach threads ddb sys src conf mach kern vm device ipc parisc parisc parisc mach

user kernel include bootstrap

mk

libmach mach system call library
threads C threads package
ddb Dave�s debugger
sys various UNIX like include �les
src sources for con�g� makeboot� MiG���
conf con�guration information
mach mach include �les
kern clock� syscalls� tasks� threads
vm virtual memory
device generic device routines
ipc interprocess communications
bootstrap out of kernel default pager
parisc machine dependent code for

Hewlett�Packard pa�risc machine

Carnegie
Mellon

Single Server Code Layout

ux

emulator include server

parisc parisc bsd conf sys ufs uxkern vm parisc

emulator sources for emulation library
include Make�les for releasing include �les
server single server sources

bsd bsd sources
conf con�guration �les
sys UNIX include �les
ufs UNIX �le system
uxkern Mach glue code
vm virtual memory
parisc machine dependent code for

Hewlett�Packard pa�risc machine

Carnegie
Mellon

�

C Shell Tricks

setenv M�BASE
usr	
bobw
M�
setenv M�SRC �M�BASE
src
setenv M�OBJ �M�BASE
obj
parisc mach

alias ksrc cd �M�SRC
mk
kernel
alias ssrc cd �M�SRC
ux
server
alias esrc cd �M�SRC
ux
emulator
alias kobj cd �M�OBJ
mk
kernel
alias sobj cd �M�OBJ
ux
server
alias eobj cd �M�OBJ
ux
emulator

set cdpath�
�M�SRC
mk n
�M�SRC
mk
kernel n
�M�SRC
ux n
�M�SRC
ux
server n
�M�SRC
ux
emulator�

setenv FAKE ��DKERNEL �I� �I�� n
�I�M�OBJ
mk
kernel
STD�ANY�debug�

Carnegie
Mellon

�

Strange and Mysterious Build Magic

setvar shell script
Sets environment variables for a speci�c machine

mk�Makeconf

Tells make where the object area is
MAKEOBJDIR

Tells make where the source area is
MAKESRCDIRPATH

See
Building Mach ���

Mary R�Thompson and Richard P� Draves
Available via anonymous ftp

Carnegie
Mellon

��

Kernel Build Tools

doconf
Reads MASTER con�guration �les and produces
input for con�g

con�g
Generates include �les and Make�le for building
kernel

MiG
Mach interface generator� the IPC stub generator

makeboot
Binds a kernel and the default pager into a single
bootable image

Carnegie
Mellon

��

Porting Con�g

Add con�guration type to con�g�h
�de�ne CONFTYPE PARISC ��

Add test for con�guration type in con�g�y
else if
�strcmp
��� �parisc��� f

conftype � CONFTYPE PARISC�
conftypename � �parisc��

g

Add case in main�c
case CONFTYPE PARISC�

parisc ioconf
��

Add routine for ioconf�c in mkioconf�c
�ifdef CONFTYPE PARISC
parisc ioconf
� fg
�endif
� CONFTYPE PARISC �

Add users entry in mkmake�le�c
f ��� �� �	�� g
� CONFTYPE PARISC �

Carnegie
Mellon

�	

The MASTER �les

� A simple way to specify con�gurations

� Read by doconf to create input to con�g

�
� STD� � hp�		 scsi lan�
� ANY� � �
�

conftype �parisc� � �hp�		�
platform HP�		 � �hp�		�
con�g mach kernel

options TRAP COUNTERS � �test�

device sd	 � �scsi�
device sd� � �scsi�
device sd� � �scsi�
device sd� � �scsi�
device lan � �lan�
pseudo�device bpf �� � �lan�

Carnegie
Mellon

��

The �les File

� Speci�es options and �les to con�g

� Paths are relative to mk
kernel

Syntax�
�OPTIONS j directory��lename n

�optional opt j standard� n
�device�driver� �ordered� �jcompiler�options�

Example�
OPTIONS
trap counters optional trap counters

parisc
locore�s standard ordered
parisc
context�s standard j �fvolatile
parisc
trap�c standard
parisc
pmap�c standard

parisc
sd�c optional sd device�driver
parisc
lan�c optional lan device�driver
parisc
bpf�c optional bpf device�driver

Carnegie
Mellon

�

Con�g Output

All output from con�g is in the object area

Make�le�internal

ioconf�c

platforms�h
�de�ne HP�		 �

trap counters�h
�de�ne TRAP COUNTERS 	

sd�h
�de�ne NSD �

lan�h
�de�ne NLAN �

bpf�h
�de�ne NBPF ��

Carnegie
Mellon

��

Specifying Options

Two ways to specify options

In MASTER �le put in an options line
options TRAP COUNTERS ��hp�		�

If there is an OPTIONS line in the �les �le
then con�g will produce an include �le

trap counters�h
�de�ne TRAP COUNTERS �

Othewise con�g will add a �D to the compile line
�DTRAP COUNTERS

Use include �les if the option will change

Carnegie
Mellon

��

MiG � The Mach Interface Generator

Stub Generator for Mach IPC

Mig sources are in �defs �les

Uses a PASCAL like syntax for historical reasons

Machine speci�cs gathered by include �les

Don�t have to �port� Mig�

Most kernel MiG output is put in subdirectories in
the object area�
include in etags�

Don�t try and debug MiG� that�s not the problem

Carnegie
Mellon

�

Makeboot

Combines the kernel with the default pager into a
single bootable image

At runtime move bootstrap
� moves pager out of
kernel data area before the BSS section is cleared

kernel object
file header

kernel text

kernel data

boot_info
structure

kernel symbol
table header

kernel symbol
table data

pager text

pager data

pager symbol
table header

pager symbol
table data

boot_header

boot_info.sym_size

boot_info.boot_size

boot_info.load_info_size

kernel object
file header

kernel text

kernel data

Carnegie
Mellon

��

Porting Makeboot and Bootstrap

o� t exec header size��
Routine to tell the size of the object �le header

int ex get header�in �le� is kernel� lp�
sym header� sym header size�
Routine to read the object �le header

void write exec header�out �le� kp� �le size�
Routine to write the object �le header

Bootstrap only needs to read the object �le header
code is very similar to ex get header
�

Carnegie
Mellon

��

Getting Started

Get build tools working

Fake include �les

Fake con�guration �les

Fake genassym�c

See what comes up unde�ned

Use grep and etags

Write small utilities like �ndsym

��
bin
sh
for �le in ��o�
do
echo ��le
nm ��le j grep ��
done

Carnegie
Mellon

	�

Kernel Bootstrap

locore.s

init()

pmap_bootstrap()

setup_main()

boot loader

idle thread

reaper thread

swapin thread

sched_thread

bootstrap_task

pagout deamon

Virtual Memory
Disabled

startup

Carnegie
Mellon

	�

Bootstrap Routines

locore
Establish a stack� initialize hardware
and call init
�

init��
Move bootstrap image� zero BSS� con�gure
bus� size memory� call pmap bootstrap
�

return from init��
Enable virtual memory
�rst fault�

setup main��
Initializes rest of machine independent system

Calls machine init
� for machine dependent
initialization
autoconf� after VM is enabled

Starts additional bootstrap threads

Creates bootstrap task
�rst syscall�

Carnegie
Mellon

		

Miscellaneous Routines

void startrtclock��
Set the current time of day and start periodic
clock interrupts

void resettodr��
Set the time of day clock

void halt cpu��
Halt this cpu

void halt all cpus�reboot�
Halt all processors and optionally reboot

Carnegie
Mellon

	�

Device Drivers

Devices are very similar to BSD devices
One table instead of a cdevsw and bdevsw table

struct dev ops f
char �d name�
int ��d open����
int ��d close����
int ��d read����
int ��d write����
int ��d getstat����
int ��d setstat����
int ��d mmap����
int ��d async in����
int ��d reset����
int ��d port death����
int d subdev�
int ��d dev info����

g�

struct dev ops dev name list���
int dev name count�

Carnegie
Mellon

��

Early Stages of a Kernel�s Life

� Kernel links

� Kernel loads and toggles lights

� Printf works

� Debugger works

� Pmap initialized

� Virtual memory enabled ��rst VM fault�

� First user process �bootstrap�

� First system call �from bootstrap�

� Server loads

� Paging �le found

� Init doesn�t die

� First signal �from �bin�sh�

� Single user � prompt

�Multi	user

� Network works

� Compiles lisp

Carnegie
Mellon

��

Debugging

Two schools of thought

�Hell yes� I�m from Texas�
core dumps
printf
adb

Debugger
 use ddb� it�s just printf

New Yorker approach
Symbolic
Source Level
Debugging scripts

Debugger
 use remote GNU gdb

Carnegie
Mellon

��

Sophisticated Debugging

source code

symbol table

execution target
tty
stub

RS232 line

Mach KernelGNU gdb

Stable Machine Test Machine

Stable machine
Symbolic source level debugging
Debugging scripts

Test machine
Hooks into tty driver
Hooks into trap handler
Small stub

read�write memory and registers
single step and set breakpoints

Carnegie
Mellon

��

Debugging Tips

Investment
This isn�t the last bug�
Every hour invested in debuggers pays o

Learn how to write GDB scripts
Know your machine

Read the code carefully
Bugs deep in kernels are hard to �nd

User Level Testing
Interactive testing and scripts
Lex and yacc can build powerful tools
Test modules as you go along

In Kernel Testing
Build a small kernel with printf

Simple Counters
In trap handlers� I�O routines� cache �ushes
Do the numbers make sense�

Carnegie
Mellon

��

More Debugging Tips

Use assert
assert�addr �� ���

Conditionalized print statements
Powerful if used with the debugger
and patched at runtime

if �addr �� catch me�
printf��addr matches catchmenn���

Make a special printf syscall
Always prints a string from user space

Build debugging into your system
Flags on interrupt�trap stack frames
Don�t hide registers from user
Make debugging output easy to read �PSW�
Whenever possible write in C not assembly

When you�re frustrated��� build a new tool

Carnegie
Mellon

��

Part II � Virtual Memory

Mach Virtual Memory

Virtual Memory Data Structures

Resolving a Page Fault

Copy	on	write

Physical Maps �pmaps�

Pmap Routines

Page Reference Bits

Virtual Cache Alignment

Zone Package

Grabbing Physical Pages

Carnegie
Mellon

�	

Recommended Reading

Machine�Independent Virtual Memory Management

for Paged Uniprocessors and Multiprocessor Architectures

Richard Rashid et�al�
CMU technical report CMU	CS	��	���
�also in ASPLOS II� October �����

Architecture�Independent Virtual Memory Management

for Parallel and Distributed Environments� The

Mach Approach

Avadis Tevanian Jr��s Ph�D� Thesis
CMU technical report CMU	CS	��	���

Exporting a User Interface to Memory Management

from a Communication�Oriented Operating System

Michael Youngs�s Ph�D� Thesis
CMU technical report CMU	CS	��	���

Carnegie
Mellon

�

Mach Virtual Memory

Basic Data Structures

vm page
Describes a physical page of memory

vm object
A contiguous repository of data some
in backing store� some in memory

vm map entry
A mapping of contiguous virtual address
space and protection to a vm object

pmap
A �physical map�� the machine dependent
representation for mappings �page tables�

vm map
A collection of vm map entries and a pmap
there is one vm map per task

Carnegie
Mellon

��

Simple VM Example

vm_map pmap

protection protection protection

backing
store

vm_page

vm_map_entry

vm_object

virt addr range virt addr range virt addr range

Key points
Memory object represents a piece of data
and physical memory is a cache of this data

Mapping entries map a contiguous range of
virtual addresses with common protection
onto a memory object

Carnegie
Mellon

��

vm page Structure

Fields in vm page structure

Links for page queues
double linked page list

Object and o
set for page

Physical address

Flags
inactive� active and free

Page list page is on

busy

Page in transit from pager

tabled

vm page is in object�o
set table

�ctitious

vm page is placeholder in object

Carnegie
Mellon

��

Memory Object

Fields in vm object structure

Size of object
Reference count

Pager for object
O
set into pager

Pointer to shadow object
Pointer to copy object

Miscellaneous �ags
temporary

Object can not be changed by an external
memory manager

can persist

Object can persist after last reference

internal

Created by kernel managed by default pager

Carnegie
Mellon

��

Object�O�set Hash Table

What vm page is in an object at a speci	c
o
set�

Use a hash table

Hash is a function of object and o
set

vm page t vm page lookup�object� o
set

Lookup a page in an object

Carnegie
Mellon

��

Mapping Entry

Fields in vm map entry structure

Virtual address start and end
Always page aligned

Current and maximum protection
read�write�execute

Inheritance with child on fork
shared� copied or none

Miscellaneous �ags
needs copy

Region marked as copy	on	write

Carnegie
Mellon

��

Virtual Memory Map

Fields in vm map structure

Minimum and maximum virtual address

Size of address map

Reference count

Head and tail of mapping entries list

Hint for mapping entry search

Pmap associated with map

Carnegie
Mellon

��

Resolving a Simple Page Fault

�� Start with map and virtual address

�� Find map entry containing virtual address

�� Get object and o
set from map entry

�� Add o
set into map entry to o
set into object

�� Find vm page structure from object�o
set hash
table

�� If vm page is VM PAGE NULL then zero �ll
and enter mapping into pmap

�� If vm page resident then enter mapping into
pmap

�� If vm page is paged out then ask pager for page
when provided enter mapping into pmap

Carnegie
Mellon

��

Copy�on�write

Transparent optimization for copying data

Access to page is marked read only to both
parties

Writing to a page causes a fault and a new
private copy of the page is made

Can only share on a page granularity

Two forms

Symmetric copy	on	write
Both source and destination treated the same

Asymmetric copy	on	write
Used when an external memory manager is
involved

Carnegie
Mellon

�	

Symmetric Copy�on�write

(needs copy)

address
map entry

(needs copy)

address
map entry

address
map entry

Source Source Destination

Copy Operation

memory
object

memory
object

Copy operation

Point destination mapping entry at source object

Set needs copy for both mapping entries

Remove write access to all pages in object
�removed by using physical address�

Carnegie
Mellon

�

Write to Page

(needs copy)

address
map entry

address
map entry

Source Destination

contains
modified
pages

contains
unmodified
pages

shadow
object

memory
object

Write operation

Causes a protection fault

Shadow object is created and a copy of the
faulting page is inserted in the shadow object

Unmodi�ed pages are still in original object

Write by source or destination treated the same

Carnegie
Mellon

��

Copy�on�write Shadow Chains

address
map entry

address
map entry

shadow
object

address
map entry

shadow
object

shadow
object

memory
object

memory
object

memory
object

copy

operation

copy

operation

Multiple copy	on	write operations can result in a
shadow chain

Attempt is made to collapse chain when possible

Carnegie
Mellon

��

External Memory Managers

Problem

Object is backed by an external memory
manager

Memory manager wants to see all changes
to the object

Original object will not see the changes
with symmetric copy	on	write

Solution

Make original object a �copy object�

Copy objects push pages up to a shadow
object before they are modi�ed

Copy objects re�ects all changes

Carnegie
Mellon

��

Asymmetric Copy�on�write

address
map entry

address
map entry

address
map entry

Source Source Destination

Copy Operation

memory
object

copy
object

shadow
object

shadow link

"copy of" link

Original object
managed by
external pager

Write operation

If �rst write to page in copy object then
push an unmodi�ed copy to shadow and then
modify page in copy object

If �rst write to page in shadow object then
pull an unmodi�ed copy from copy object and
then modify page in shadow object

Carnegie
Mellon

��

Physical Maps �pmaps�

operating
system

hardware

insert lookup modify

lookup
(tlb fault)

modify
(dirty bit)

remove

physical map (pmap)

pmaps

A pmap is simply a dictionary structure that
supports the following operations

insert
remove
modify
lookup

Both hardware and the operating system query
and modify the dictionary

Hardware usually dictates the internal format of
the dictionary

Carnegie
Mellon

��

Pmap Dictionary Entry

A pmap dictionary entry consists of

Virtual address

Physical address

Protection
read�write�execute

Modi�ed �ag

Referenced �ag

Wired �ag

Any non	wired entry can be discarded at any
time and regenerated by the machine independent
data structures when needed

Carnegie
Mellon

��

A Forward Page Table Example

page offsetpte entrydirectory

page table
directory

page table

root pointer

virtual address

pte

valid bit
modified bit

referenced bit
wired bit

physical page numberprotection

Page Table Entry (pte)

Carnegie
Mellon

��

The Physical to Virtual Table

pmap, VA

all mappings to
the same physical
address

pmap, VA pmap, VA

physical to
virtual table

physical
page
number

The pmap module must �nd entries given either
the virtual or physical address

Length of table is the number of physical pages
of memory managed by virtual memory system

Each entry is a linked list of �pmap� virtual
address� pairs mapped to that physical page
of memory

Carnegie
Mellon

��

A Word on Addresses

All addresses� both virtual and physical� are byte
addresses unless speci�cally stated otherwise

Virtual addresses are always quali�ed by the pmap
module they are in

A range of addresses� whether speci�ed as a start and
end address or a start and length� always includes the
�rst address and excludes the last address

The addresses for a page of memory will be given as
the �rst address in the page

The page size must be a multiple of the physical page
size but need not be the same

Carnegie
Mellon

�	

Pmap Bootstrap Routines

void pmap bootstrap�

Called by init to setup enough of the pmap
module to allow the kernel to run with virtual
memory enabled

pmap bootstrap is not part of the pmap interface

unsigned int pmap free pages�

Return the number of free physical pages that have
not been allocated �used to size the object�o
set
hash table�

void pmap init�

Called by vm init�� to initialize any structures or
zones that the pmap system needs to map virtual
memory

Carnegie
Mellon

�

Pmap Bootstrap Options

Two options for bootstrapping
De�ne MACHINE PAGES in pmap�h if the pmap
module wants complete control of page allocation

A useful thing to do is map all of physical memory
by the kernel �with block TLB entries if possible�

If you de�ne MACHINE PAGES then implement

vm o
set t pmap steal memory�size

Allocate and return the address of a piece of
kernel memory that is size bytes long

void pmap startup�startp� endp

Allocate and initialize a vm page t structure for
all physical memory to be managed and return
the starting and ending virtual address for the
kernel in startp and endp

Carnegie
Mellon

��

Non MACHINE PAGES option

If you don�t de�ne MACHINE PAGES then
implement

void pmap virtual space�startp� endp

Return the starting and ending virtual address
for the kernel in startp and endp

boolean t pmap next page�phys addr

Return TRUE if there is another page of
physical memory to be allocated and return
the physical address of the page in phys addr

Carnegie
Mellon

��

Pmap Create and Delete

pmap t pmap create�

Create and return a pmap

void pmap reference�pmap

Increment the reference count of this pmap

void pmap destroy�pmap

Decrement the pmap�s reference count and
delete the pmap if zero

All entries will be removed from the pmap before
the �nal pmap destroy is called

Carnegie
Mellon

��

Pmap Context Switch

void PMAP ACTIVATE�pmap� thread� cpu�
Activate the pmap for use by this thread on
this cpu

void PMAP DEACTIVATE�pmap� thread� cpu�
Deactivate the pmap used by this thread on
this cpu

void PMAP CONTEXT�pmap� thread�
Switch pmap to a new thread in the same task

These are typically �de�ne macros in pmap�h
and are sometimes null macros

In our example PMAP ACTIVATE would just set
the root page table pointer� the other two would
be null macros

Carnegie
Mellon

��

Zero Fill and Copy Physical Pages

void pmap zero page�phys addr�
Zero �ll a page of memory at the speci�ed
physical address

void pmap copy page�src addr� dst addr�
Copy a page of memory at physical address
src addr to physical address dst addr

The source page for pmap copy page may or may
not be mapped� the destination page will never be
mapped

Carnegie
Mellon

��

Miscellaneous Routines

pmap t pmap kernel��
Return the pmap for the kernel

int pmap resident count�pmap�
Return the number of physical pages mapped by
this pmap

vm o�set t pmap phys address�phys page�
Return the byte address of physical page phys page
Note� phys page is the machine dependent physical
page number not a byte address

These routines are small enough that they are usually
implemented as �de�ne macros in pmap�h

Carnegie
Mellon

��

Pmap Insert Routine

void pmap enter�pmap� virt addr� phys addr�
min prot� max prot� wired�
Create a mapping in pmap for virtual address
virt addr to physical address phys addr

The minimum protection required is min prot

which is the protection passed to vm fault��

The maximum protection allowed is max prot

If the wired �ag is set then this mapping must
never cause a page fault

Pmap enter is the only routine that can increase
access to a page of memory

min prot was added for machines with split
instruction and data TLBs that are software loaded

Carnegie
Mellon

��

Pmap Lookup Routines

vm o�set t pmap extract�pmap� virt addr�
Return the physical address mapped by the virtual
address in the speci�ed pmap or 	 if there is no
known mapping

boolean t pmap is referenced�phys addr�
Return whether the page at the speci�ed physical
address has been referenced since the last call to
pmap clear reference�� was made

boolean t pmap is modi�ed�phys addr�
Return whether the page at the speci�ed physical
address has been modi�ed since the last call to
pmap clear modify�� was made

Carnegie
Mellon

��

Pmap Modi�cation Routines

void pmap set modify�phys addr�
Set the modi�cation bit on the page at the
speci�ed physical address

void pmap clear modify�phys addr�
Clear the modi�cation bit on the page at the
speci�ed physical address

void pmap clear reference�phys addr�
Clear the reference bit on the page at the
speci�ed physical address

void pmap change wiring�pmap� virt addr�
wired�
Change the wiring status for the speci�ed
virtual address

Carnegie
Mellon

��

Change Protection

void pmap protect�pmap� start� end� prot�
Change the protection on the range of virtual
addresses in the speci�ed pmap

void pmap page protect�phys addr� prot�
Change the protection for all mappings to the
speci�ed physical page

A protection of VM PROT NONE should remove
the mapping

If the caller attempts to increase access then remove
the mapping� only pmap enter�� can increase access

Carnegie
Mellon

��

Machine Speci�c Attributes

kern return t pmap attribute�pmap� address�
size� attribute� value�
Set a speci�c attribute on a range of addresses
in the given pmap

Attributes
MATTR CACHE

Cachability

Value
MATTR VAL CACHE FLUSH

Flush all caches
MATTR VAL DCACHE FLUSH

Flush data caches
MATTR VAL ICACHE FLUSH

Flush instruction caches

Add machine speci�c attributes if needed

Carnegie
Mellon

��

Optional Pmap Routines

void pmap collect�pmap�
Garbage collect pages for this pmap that are no
longer used

void pmap copy�dst pmap� src pmap� dst addr�
length� src addr�
Copy the source pmap entries from for the address
range src addr to src addr � length into the
destination pmap at address dst addr

void pmap pageable�pmap� start� end� pageable�
Make the speci�ed pages in the given pmap pageable
�or not� as requested� pmap enter�� will also specify
that these pages are to be wired down if appropriate

These routines are optional and may be provided as null
macros in pmap�h

Carnegie
Mellon

�	

Memory Manipulation Routines

void bcopy�src� dst� length�
Copy length bytes from src to dst

void bzero�addr� length�
Zero length bytes starting at addr

kern return t copyin�src� dst� length�
Copy length bytes from the current thread
s
address src to the kernel address dst

kern return t copyout�src� dst� length�
Copy length bytes from the kernel address src
to the current thread
s address dst

kern return t copyinmsg�src� dst� length�
kern return t copyoutmsg�src� dst� length�

Same as copyin and copyout except that src
and dst are word aligned and length is a
multiple of �

Carnegie
Mellon

�

Bad User Addresses

Bad user addresses in copyin or copyout

Before accessing user space load error recovery
routine in recover in thread structure

Clear recover when completed

In fault handler if kernel data fault and recover is
not null then patch program counter to return to
error recovery routine

Alternate method

Hard code start and ending addressed of copyin
and copyout routines and the recovery routine

Carnegie
Mellon

��

Page Reference Bits

If your hardware doesn
t have page reference bits
you might �nd it advantageous to let the machine
dependent code simulate them

To do this add the following two lines to pmap�h

�de�ne pmap is referenced�phys� �FALSE�
�de�ne pmap clear reference�phys� n

pmap page protect�phys� VM PROT NONE�

See the paper
Page Replacement and Reference Bit Emulation

in Mach

by Richard P� Draves

Carnegie
Mellon

��

Virtual Cache Alignment

If you have virtual caches then you can allow
the pmap module to in�uence the placement of
shared memory between address spaces

�de�ne PMAP ALIGN in pmap�h

Requires a few new routines to be written
pmap align init
pmap align copy
pmap align set
pmap align propose

See the pmap module for the Hewlett�Packard
parisc machines

Also see the paper
Consistency Management for Virtually Indexed Caches

Bob Wheeler and Brian N� Bershad
CMU technical report CMU�CS�
�����
�also in ASPLOS V� October �

��

Carnegie
Mellon

��

Zone Package

Zones allow fast allocation of a �xed size structure

zone t zinit�size� max� alloc� pageable� name�
Initialize a new zone with elements of size bytes
using at more max bytes of memory� allocate space
in alloc byte chunks� pageable declares if the zone
may be paged while name is the name of the zone

vm o�set t zalloc�zone�
Allocate an element from the zone

vm o�set t zget�zone�
Allocate an element from the zone without
blocking and return 	 if none available

void zfree�zone� elem�
Free an element back to the speci�ed zone

Carnegie
Mellon

��

Grabbing Physical Pages

Routines for grabbing a physical page from the
free list

vm page t vm page grab��
Remove a page from the free list or return
VM PAGE NULL if the free list is too small

void vm page wait�continuation�
Wait for a free page to become available

while ��p � vm page grab��� �� VM PAGE NULL�
vm page wait��void ������ 	��

void vm page release�mem�
Return a page to the free list

int vm page grab phys addr��
Grab a page of memory from the free list and
return the physical address or �� if no page is
available use this only if the page will never be
freed

Carnegie
Mellon

��

Part III � Saving and Restoring State

Task and thread data structures

Kernel entry and exit
System calls
Trap and interrupts

Kernel and interrupt stack

Saved state Structure

Where to save state

Continuations

State routines

Trap handlers

Asynchronous system traps

Carnegie
Mellon

��

Task and Thread Data Structures

taskthread map pmap

kernel stack

kernel
state and
runtime
stack

pcb

kernel
registers

user
registers

active_threads[cpu]

active_stacks[cpu]

thread thread state � scheduling information
pcb user state on entry to kernel
kernel regs registers saved across context switch
kernel stack thread
s kernel runtime stack
task common task information
map task
s virtual memory map
pmap task
s physical map

Pointers to structures have a � t� on the end of
them� �i�e� task t� thread t�

Carnegie
Mellon

��

Kernel Entry and Exit

Three types of kernel entry

System call

Trap

Interrupt

Calling conventions

Caller saves registers

Callee saves registers

Carnegie
Mellon

��

System Calls

kernel code
 (C)

kernel entry
(assembly)

kernel exit
(assembly)

syscall stub
(assembly)

syscall stub
(assembly)

user
code

user
code

caller-saves
registers saved
on user stack

trap into
kernel

caller-saves
registers
restored from
user stack

return to
user mode

direction of code flow

callee-saves
registers saved
and restored on
kernel stack

User code saves caller�saves registers before syscall

Only use caller�saves registers in syscall stub or
kernel entry and exit code

User registers are saved in the pcb

Should only have to save a few things like the
return pointer and the user stack pointer

Switch to kernel address space and onto kernel
stack

Kernel code will save callee�saves registers

Carnegie
Mellon

�	

Trap or Interrupt in User Mode

kernel code
 (C)

kernel exit
(assembly)

user
code

trap into
kernel

return to
user mode

direction of code flow

kernel entry
(assembly)

caller-saves
registers saved

caller-saves
registers restored

user
code

callee-saves
registers saved
and restored on
runtime stack

User code doesn�t save caller�saves registers before
a trap or interrupt

Kernel entry and exit must save and restore caller
saves registers

Have to use some �temporary� kernel registers to
get started

Carnegie
Mellon

�

Trap or Interrupt in Kernel Mode

kernel code
 (C)

kernel exit
(assembly)

trap into
kernel

direction of code flow

kernel entry
(assembly)

caller-saves
registers saved

caller-saves
registers restored

callee-saves
registers saved
and restored on
runtime stack

kernel
code

kernel
code

return to
kernel mode

Very similar to user mode trap or interrupt

Don
t have to change address space to kernel

Carnegie
Mellon

��

Kernel and Interrupt Stack

Each thread has a kernel stack which is typically
small ��k bytes�

Each cpu has an interrupt stack which is typically
larger ��	k � �	k bytes�

Could have only kernel stacks but then each would
have to be much larger

Using an interrupt stack allows nested interrupts
without over�owing a kernel stack

Thread may block if using kernel stack

Thread may not block if using interrupt stack

Carnegie
Mellon

��

Saved state Structure

Layout for registers saved on kernel entry and exit

Add debugging �ags such as reason for kernel entry

Add �ag to allow partial register reload for
debuggers and thread setstatus��

Make life easier and use the same structure for pcb�
kernel stack� interrupt stack and thread status

Make room for all registers from the start

Carnegie
Mellon

��

Saved State and Runtime Stack

save state in ���

on stack event
syscall trap interrupt

user pcb pcb pcb
kernel can
t happen current stack interrupt stack
interrupt can
t happen current stack current stack

use stack ���

on stack event
syscall trap interrupt

user kernel stack kernel stack interrupt stack
kernel can
t happen current stack interrupt stack
interrupt can
t happen current stack current stack

Carnegie
Mellon

��

Continuations

Problem
Kernel stacks must be wired which requires
lots of physical memory

Solution
Many threads are blocked in a known state

Discard kernel stack when blocked thread will
return immediately to user mode and provide
instead a routine to call to leave kernel

Complication
Must save user callee�saves registers if
continuation is possible

See the paper
Using Continuations to Implement Thread Man�

agement and Communication in Operating Systems

Richard P� Draves� et�al�
Thirteenth SOSP� October �

�

Carnegie
Mellon

��

Native System Calls

typedef struct f
int mach trap arg count�
int ��mach trap function����
boolean t mach trap stack�
int mach trap unused�

g mach trap t�

mach trap t mach trap table��	

int mach trap count

Carnegie
Mellon

��

Continuation Stack Routines

void stack attach�thread� stack� continuation�
Attach the stack to the thread and set the return
pointer to run the continuation

boolean t stack alloc try�thread� continuation�
Non�blocking attempt to allocate and attach a
kernel stack

void stack alloc�thread� continuation�
Allocate and attach a kernel stack� may block

void stack free�thread�
Free a thread
s kernel stack

void stack collect��
Free excess kernel stacks

Carnegie
Mellon

��

Continuation Routines

void call continuation�routine�
Reset kernel stack pointer to base of kernel stack
and call the speci�ed routine

void thread syscall return�return value�
Place the argument in the syscall return register�
restore state from pcb and return to user mode

void thread set syscall return�return value�
Set the eventual return value for this syscall

void thread exception return��
Restore state from pcb and return to user mode

void thread bootstrap return��
Return to user mode for the �rst time

Carnegie
Mellon

��

PCB Routines

void pcb module init��
Called at bootstrap time to initialize pcb data
structures

void pcb init�thread�
Allocate and initialize a pcb and attach it to
the speci�ed thread

void pcb terminate�thread�
Free the pcb attached to the speci�ed thread

kern return t thread setstatus�thread�
avor�
state� count�
Set the user registers in the pcb

kern return t thread getstatus�thread�
avor�
state� count�
Get the user registers from the pcb

Carnegie
Mellon

�	

Context Switch

Save and restore callee�saves registers and stack

Save and restore the context from the bottom of
the kernel stack

void load context�new thread�
Load the context of the �rst thread

void switch context�old thread� continuation�
new thread�
Save the context of the old thread� set swap func
in the old thread
s thread structure to run the
continuation when resumed� restore the context
of the new thread

Keep old thread in arg	 for thread continue
and return old thread for switch context

stack hando��old thread� new thread�
Move the stack from the old thread to the new one

Carnegie
Mellon

�

Miscellaneous State Routines

vm o�set t set user regs�stack base� stack size�
entry� arg size�
Allocate argument area� set registers for �rst
user thread and return where to store the
arguments on the stack

vm o�set t user stack low�stack size�
Return preferred address of user stack� always
returns low address of stack

Carnegie
Mellon

��

Trap Handlers

Calls made from trap handlers

Virtual memory faults
kern return t vm fault�map� vaddr� fault type�
change wiring� resume� continuation�

Clock interrupt
void clock interrupt�usec� usermode� basepri�

Exceptions
void exception�exception type� code� subcode�

Carnegie
Mellon

��

Asynchronous System Traps

ASTs are a way to force a thread to take a trap
when it about to return to user mode

AST state is a per processor state

Used to implement involuntary context switches

If MACHINE AST is de�ned then implement

asto��cpu�
called to disable AST trap on cpu

aston�cpu�
called to enable AST trap on cpu

Else use the value of need ast�cpu�

Carnegie
Mellon

��

Interrupt Priority Level

Spl is the level of interrupts that we are blocking

only return from interrupt can lower spl

kernel uses �from highest to lowest�
int splhigh�� block all interrupts
int splclock�� block clock and below
int splsched�� block clock and below
int splbio�� block block I�O and below
int splimp�� block network and below
int spltty�� block terminal and below
int splsoftclock�� block softclock and below
int spl��� interrupts not blocked

Above routines return old spl level
void splx�s� set spl to level s

void set softclock��
Called from clock interrupt to schedule a lower
level interrupt

Carnegie
Mellon

��

Part IV � User Code

Libmach

Cthread locks

Cthread routines

Emulated system calls

Emulator routines

Signals

BSD single server

Carnegie
Mellon

��

Libmach

Contains all the stubs to call the kernel

Machine dependent code

setjmp and longjmp

bzero and bcopy

fork
Special fork that calls mach init�� in child

crt	�s
Special version that calls mach init�� and
cthread init�� routines

Carnegie
Mellon

��

Cthread Locks

spin lock t
Typedef for a lock

SPIN LOCK INITIALIZER
Static initializer for a lock

spin lock init�s�
Dynamic initializer for a lock

spin lock locked�s�
Test if a lock is locked

Carnegie
Mellon

��

Cthread Locks Continued

spin try lock�s�
Try and acquire a lock� return 	 if successful

spin unlock�s�
Spin unlock

If you are on a uniprocessor you might want
to look at

Fast Mutual Exclusion for Uniprocessors

Brian N� Bershad et�al�
CMU technical report CMU�CS�
�����
�also in ASPLOS V� October �

��

Carnegie
Mellon

��

Cthread Routines

cproc setup�child� thread� routine�
Set up the initial state of a cthread so that it
will invoke routine�child� when it is resumed

void cproc switch�cur� next� lock�
Suspend the current thread and resume the
next one

void cproc start wait�parent context� child�
stackp� lock�
Save the current threads state� switch to a new
stack and call cproc waiting�child�

void cproc prepare�child� child context� stack�
Create a call frame and context on the given stack
so that when invoked by cproc switch it calls
cthread body�child�

Carnegie
Mellon

�	

Emulated System Calls

emulation
library

1

2 3
4

5

67

server

kernel

�� User process executes syscall trap
�� Emulated system call redirected to emulator
�� Emulator builds message� calls mach msg send
�� A server thread that previously called

mach msg receive and is waiting in the kernel
takes message to server

�� The server does mach msg send to send a reply
�� The user
s thread waiting in the kernel takes the

reply message to the emulator
�� As an optimization the emulator returns directly

to the server

Carnegie
Mellon

�

Emulated Syscall Data Structures

typedef struct eml dispatch f
decl simple lock data�� lock�

int ref count�
int disp count�
int disp min�
eml routine t disp vector����

g �eml dispatch t�

The emulated syscall dispatch table pointer in
active threads�	� � task � eml dispatch

If you cache the emulation dispatch pointer���

void syscall emulation sync�task�
Called when the task
s emulation vector changes

Carnegie
Mellon

��

Emulator Routines

void emul setup�task�

Call task set emulation�task� routine�
syscall number� for each system call

Most syscalls are redirected to emul common

except e fork which is directed to emul save regs

Positive syscall numbers are UNIX syscalls
negative numbers are CMU extensions

Carnegie
Mellon

��

Emul common

Non�fork system calls

�� Save essential caller�saves registers
�� Acquire emul stack lock

�� Call emul stack alloc�� to get a stack
�� Release emul stack lock
�� Switch to emulator stack
�� Call emul syscall�� to create message to server

� Acquire emul stack lock

�	� Turn in emulator stack and return to user
stack

��� Release emul stack lock
��� Check for signals and call signal handler
��� Clean up and return to user

Carnegie
Mellon

��

Emul save regs

Similar to emul common except that you must
save and restore argument and syscode registers
in parent

In child you must call child init�� to initialize
the emulator

Carnegie
Mellon

��

Emul syscall

Collects arguments and calls MiG stub to start
remote procedure call to server

On return checks for system calls to be restarted

Checks for signals and dispatches them if needed

Carnegie
Mellon

��

Signals

void take signal�����

Call bsd take signal to get any signals pending

Build signal context
Fake return so that you go to handler

sigreturn

Called by signal handler

if using mapped U area
call e shared sigreturn��

else
call bsd sigreturn��

The server may need assistance from the kernel to
restore the state

Carnegie
Mellon

���

BSD Single Server

A few machine speci�c routines needed for loading
executable� delivering signals� ptrace�����

boolean t machine exception�����
Where the exception�� call ends up� translates
a mach exception into a UNIX exception

Create cdevsw and bdevsw tables in conf�c

Most single server devices use generic devices to
interface with the kernel

Carnegie
Mellon

���

