
Mach 3 Server Writer’s
Interfaces

Open Software Foundation and Carnegie
Mellon University

Keith Loepere, Editor

S FO

NORMA-MK12, user15: July 15, 1992

This book is in the Open Software Foundation Mach 3 series.

Books in the OSF Mach 3 series:

Mach 3 Kernel Principles

Mach 3 Kernel Interfaces

Mach 3 Server Writer’s Guide

Mach 3 Server Writer’s Interfaces

Revision History:

Revision 2 MK67, user11:January 15, 1992 OSF Mach release
Revision 2.1 NORMA-MK12, user15: July 15, 1992

Change bars indicate change since MK67, user 11.

Copyright© 1990 by the Open Software Foundation and Carnegie Mellon University.

All rights reserved.

This document is partially derived from earlier Mach documents written by Eric Cooper,
Richard P. Draves and Randall Dean.

Mach 3 Server Writer’s Interfaces iii

Contents

CHAPTER 1 Introduction . 1
Interface Descriptions . 1
Interface Types. 2
Special Forms. 3
Parameter Types. 3

CHAPTER 2 Library Support Functions . 5
MACH_PORT_VALID . 6
environment_port . 7
mach_device_server_port . 8
mach_error . 9
mach_error_string . 10
mach_error_type . 11
mach_init . 12
mach_msg_destroy . 13
mach_msg_server . 14
mach_privileged_host_port . 16
mach_task_self. 17
mig_dealloc_reply_port . 18
mig_get_reply_port . 19
mig_init . 20
mig_reply_setup. 21
mig_strncpy . 23
name_server_port. 24
quit . 25
round_page. 26
service_port . 27
slot_name . 28
trunc_page . 29
vm_page_size. 30

CHAPTER 3 C Thread Functions. 31
condition_alloc. 32
condition_broadcast . 33
condition_clear. 34
condition_free . 35
condition_init . 36
condition_name . 37

iv Mach 3 Server Writer’s Interfaces

condition_set_name . 38
condition_signal. 39
condition_wait . 40
cthread_count. 42
cthread_data . 43
cthread_detach . 44
cthread_exit . 45
cthread_fork . 46
cthread_init . 47
cthread_join . 48
cthread_kernel_limit . 49
cthread_limit . 50
cthread_mach_msg . 51
cthread_msg_active . 53
cthread_msg_busy . 54
cthread_name . 55
cthread_self . 56
cthread_set_data. 57
cthread_set_kernel_limit . 58
cthread_set_limit . 59
cthread_set_name. 60
cthread_stack_size . 61
cthread_unwire. 62
cthread_wire. 63
cthread_yield . 64
mutex_alloc . 65
mutex_clear . 66
mutex_free . 67
mutex_init . 68
mutex_lock. 69
mutex_name. 70
mutex_set_name . 71
mutex_try_lock . 72
mutex_unlock. 73
spin_lock . 74
spin_try_lock . 75
spin_unlock . 76

CHAPTER 4 Name Server. 77
netname_check_in . 78
netname_check_out . 80
netname_look_up. 82

Mach 3 Server Writer’s Interfaces v

netname_version . 84

CHAPTER 5 NetMemory Server. 85
netmemory_cache . 86
netmemory_create . 88
netmemory_destroy . 90

CHAPTER 6 Service Server. 91
service_checkin . 92
service_waitfor. 93

APPENDIX A C Language Functions. 95
libmach_sa.a. 95
libthreads.a. 96
libmach.a . 96

APPENDIX B Data Structure Definitions . 99
mig_reply_header . 100

APPENDIX C Error Return Values . 101

APPENDIX D Index . 103

vi Mach 3 Server Writer’s Interfaces

Mach 3 Server Writer’s Interfaces 1

CHAPTER 1 Introduction

This book documents the interfaces of use in writing a Mach server. The text describes
each interface in isolation. The relationship of interfaces to one another, and the way that
interfaces are combined to write user servers is the subject of the Server Writer’s Guide.

Interface Descriptions

Each interface is listed separately, each starting on its own page. For each interface, some
or all of the following features are presented:

• The name of the interface

• A brief description

• The pertinent library. For functions, this is the library that contains it and the header
file that provides the function prototype. For data structures, this is the header file that
defines it.

The Mach 3 system provide two general purpose libraries, and a few special purpose
ones. The general purpose libraries are libmach_sa.a and libmach.a. libmach_sa
(stand-alone) contains only kernel interfaces and a handful of library routines com-
pletely implemented without assistance from other servers. libmach.a contains all of
the functions in libmach_sa.a plus other libraries that may call upon services of other
servers (a BSD server, in particular). A server that wishes to “stand alone” in the ab-
sence of a BSD server or any of the Mach servers should link only against libmach_-
sa. Many of the examples in the Server Writer’s Guide, though, depend on other
services (the ability to print to a terminal, for example) and therefore link against lib-
mach.

• A synopsis of the interface, in C form

• An extended description of the function performed by the call

2 Mach 3 Server Writer’s Interfaces

Introduction

• Any macro or special forms of the call

• A description of each parameter to the call

• Additional notes on the use of the interface

• Cautions relating to the interface use

• An explanation of the significant return values

• References to related interfaces

Interface Types

Some of the interfaces in this book are MIG generated interfaces. That is, they are stub
routines generated from MIG interface description files. Calling these interfaces will ac-
tually result in a MACH IPC message being sent to the port that is the first argument in
the call. This has two important effects.

• These calls may fail for various MIG or IPC related reasons. The list of error returns
for these calls should always be considered to also include the IPC related errors
(MACH_MSG_..., MACH_SEND_... and MACH_RCV_...) and the MIG related er-
rors (MIG_...).

• These calls only invoke their expected effect when the acting port is indeed a port of
the specified type. That is, if a call expects a port that names a task (a kernel task
port) and the port is instead a port managed by a task, the routine will still happily
generate the appropriate MACH message and send it to that task. What the target task
will do with the message is up to it. Note that it is this effect that allows the Net mes-
sage server to work.

Most of these interfaces are of the type Function. This means that there is actually a C
callable function (most likely in libmach.a) that has the calling sequence listed and that
when called invokes some function or sends a message to some server.

Some interfaces have the type Server Interface. Such a description applies to interfaces
that are called in server tasks on behalf of messages sent from some other source. That
is, it is assumed that some task is listening (probably with mach_msg_server) on a port
to which a server is to send messages. A received message will be passed to a MIG gener-
ated server routine (service_server) which will call an appropriate server target function.
It is these server target functions, one for each different message that can be received,
that are listed as Server Interfaces. For any given message, there are any number of pos-
sible server interface calling sequences that can be generated, by permuting the order of
the data provided in the message, omitting some data elements or including or omitting
various header field elements (such as sequence numbers). In most cases, a single server
interface calling sequence has been chosen with a given MIG generated server message
de-multiplexing routine that calls these interfaces. In some cases, there are more than one
MIG generated server routines which call upon different server interfaces associated with
that MIG service routine. In any event, all Server Interfaces contain within their docu-
mentation the name of the MIG generated server routine that invokes the interface.

Mach 3 Server Writer’s Interfaces 3

Special Forms

Special Forms

There are various special interface forms defined in this volume.

• The MACRO form specifies macros (typically defined in mach.h) that provide short-
hand equivalents for some variations of the longer function call.

• The SEQUENCE NUMBER form of a Server Interface defines an additional MIG
generated interface that supplies the sequence number from the message causing the
server interface to be invoked. The existence of such a form implies the existence of
an alternate MIG generated message de-multiplexing routine that invokes this special
interface form.

• The ASYNCHRONOUS form defines a MIG generated version of a Function that
allows the function to be invoked asynchronously. Such a version requires an addition-
al parameter to specify the reply port to which the reply is sent. The return value from
the asynchronous function is the return status from the mach_msg call sending the re-
quest, not the resulting status of the target operation. The asynchronous interface also
requires a matching Server Interface that defines the reply message containing data
that would have been output values from the normal function, as well as the resulting
status from the target operation.

Parameter Types

Each interface description supplies the C type of the various parameters. The parameter
descriptions then indicate whether these parameters are input (“in”), output (“out”) or
both (“in/out”). This information appears in square brackets before the parameter descrip-
tion. Additional information also appears within these brackets for special or non-obvi-
ous parameter conventions.

The most common notation is “scalar”, which means that the parameter somehow de-
rives from an int type. Note that port types are of this form.

If the notation says “structure”, the parameter is a direct structure type whose layout is
described in APPENDIX B unless the structure type is intended to be opaque.

The notation “pointer to in array/structure/scalar” means that the caller supplies a pointer
to the data. Arrays always have this property following from C language rules. If not so
noted, input parameters are passed by value.

Output parameters are always passed by reference following C language rules. Hence the
notation “out array/structure/scalar” actually means that the caller must supply a pointer
to the storage to receive the output value. If a parameter is in/out, the notation “pointer to
in/out array/structure/scalar” will appear. Since the parameter is also an output parame-
ter, it must be passed by reference, hence it appears as a “pointer to in array/structure/sca-
lar” when used as an input parameter.

In contrast, the notation “out pointer to dynamic array” means that the target will allocate
space for returned data (as if by vm_allocate) and will modify the pointer named by the
output parameter (that is, the parameter to the function is a pointer to a pointer) to point

4 Mach 3 Server Writer’s Interfaces

Introduction

to this allocated memory. The task should vm_deallocate this space when done referenc-
ing it.

For a Server Interface, the corresponding version of the above is “in pointer to dynamic
array”. This indicates that the target has allocated space for the data (as if by vm_allo-
cate) and is supplying a pointer to the data as the input parameter to the server interface
routine. It is the job of the server interface routine to arrange for this data to be vm_deal-
located when the data is no longer needed.

An “unbounded out in-line array” specifies the variable in-line/out-of-line (referred to as
unbounded in-line) array feature of MIG described in the Server Writer’s Guide. The
caller supplies a pointer to a pointer whose value contains the address of an array whose
size is specified in some other parameter (or known implicitly). Upon return, if this target
pointer no longer points to the caller’s array (most likely because the caller’s array was
not sufficiently large to hold the return data), then the target allocated space (as if by
vm_allocate) into which the data was placed; otherwise, the data was placed into the sup-
plied array.

Mach 3 Server Writer’s Interfaces 5

CHAPTER 2 Library Support Functions

This chapter describes support functions and macros found in libmach.a and <mach.h>.

6 Mach 3 Server Writer’s Interfaces

Library Support Functions

MACH_PORT_VALID

Macro — Determine if a port name names a valid port right

LIBRARY
#include <mach.h>

SYNOPSIS

boolean_t MACH_PORT_VALID
(mach_port_t right);

DESCRIPTION
The MACH_PORT_VALID macro determines if the specified port name names
a valid port right.

PARAMETERS

right
[in scalar] Port name

RETURN VALUE
FALSE if the specified name is MACH_PORT_NULL or MACH_-
PORT_DEAD, TRUE otherwise

Mach 3 Server Writer’s Interfaces 7

environment_port

environment_port

Global Variable — Names the port to the environment server

LIBRARY
libmach.a

#include <mach.h>

SYNOPSIS

extern mach_port_t environment_port;

DESCRIPTION
The environment_port variable contains the port name of a send right to the en-
vironment server. It is initialized by mach_init from the task’s set of registered
ports.

RELATED INFORMATION
Functions: mach_ports_register.

8 Mach 3 Server Writer’s Interfaces

Library Support Functions

mach_device_server_port

Function — Finds the privileged kernel device master server port

LIBRARY
libmach.a

#include <mach_privileged_ports.h>

SYNOPSIS

mach_port_t mach_device_server_port
();

DESCRIPTION
The mach_device_server_port function locates the privileged device master
server port. This port allows the holder to open any device on the node. This
function will succeed only for privileged tasks.

The call tries to find the device master port first by sending a special message
(ID 999999) to the task’s bootstrap port, and, failing that, through the undocu-
mented CMU system call, task_by_pid (–33).

PARAMETERS
None

RETURN VALUE
Send rights to the device master server port or MACH_PORT_NULL

Mach 3 Server Writer’s Interfaces 9

mach_error

mach_error

Function — Print a Mach related error message

LIBRARY
libmach.a

#include <mach_error.h>

SYNOPSIS

void mach_error
(char* string,
kern_return_t errno);

DESCRIPTION
The mach_error function prints a Mach related error message on standard er-
ror. The message consists of string followed by mach_error_string (errno) fol-
lowed by errno. The actual error code is included in case it is bogus.

PARAMETERS

string
[pointer to in array of char] A string to prefix to the error message

errno
[in scalar] A return code from a Mach invocation

RETURN VALUE
None

RELATED INFORMATION
error (5), mach_error_string, mach_error_type.

10 Mach 3 Server Writer’s Interfaces

Library Support Functions

mach_error_string

Function — Return a human readable error string

LIBRARY
libmach.a

#include <mach_error.h>

SYNOPSIS

char* mach_error_string
(kern_return_t errno);

DESCRIPTION
The mach_error_string function returns a human readable string correspond-
ing to the specified Mach return value. This string is statically allocated in the
Mach library.

PARAMETERS

errno
[in scalar] A return code from a Mach invocation

RETURN VALUE
A pointer to the error message string

RELATED INFORMATION
error (5), mach_error, mach_error_type.

Mach 3 Server Writer’s Interfaces 11

mach_error_type

mach_error_type

Function — Return the system and subsystem name for an error

LIBRARY
libmach.a

#include <mach_error.h>

SYNOPSIS

char* mach_error_type
(kern_return_t errno);

DESCRIPTION
The mach_error_string function returns a string containing the system and sub-
system name that produced the specified Mach return value. This string is stati-
cally allocated in the Mach library.

PARAMETERS

errno
[in scalar] A return code from a Mach invocation

RETURN VALUE
A pointer to the system name string

RELATED INFORMATION
error (5), mach_error, mach_error_string.

12 Mach 3 Server Writer’s Interfaces

Library Support Functions

mach_init

Function — Mach task related start-up.

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

int mach_init
();

DESCRIPTION
The mach_init function performs MACH related task start-up. It also invokes
MIG related start-up. This call is made by _start automatically when a task
starts.

PARAMETERS
None

RETURN VALUE
Not meaningful.

RELATED INFORMATION
Functions: _start, mig_init .

Mach 3 Server Writer’s Interfaces 13

mach_msg_destroy

mach_msg_destroy

Function — Clean up data associated with a received message

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

void mach_msg_destroy
(mach_msg_header_t* msg);

DESCRIPTION
The mach_msg_destroy function de-allocates all port rights and out-of-line
memory found in a received message. Send and send-once rights are de-allocat-
ed; receive rights have their reference count decremented.

PARAMETERS

msg
[pointer to in structure] A received message.

RETURN VALUE
None.

RELATED INFORMATION
Functions: mach_msg.

Data Structures: mach_msg_header.

14 Mach 3 Server Writer’s Interfaces

Library Support Functions

mach_msg_server

Function — A simple generic server message loop

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

mach_msg_return_t mach_msg_server
(boolean_t (*demux)

(mach_msg_header_t* request,
mach_msg_header_t* reply),

mach_msg_size_t max_size,
mach_port_t rcv_name);

DESCRIPTION
The mach_msg_server function loops, reading messages from rcv_name, and
passing them to the demux routine. The demux routine is called as follows:

(*demux) (request, reply);

where:

request
[pointer to in structure] is a pointer to the message received from
rcv_name.

reply
[out structure] is a pointer to an area (of size max_size) into which a re-
ply message is to be placed.

The demux routine is declared to take mach_msg_header_t as arguments. It is
actually passed mig_reply_header_t values which are cast accordingly.

A reply message will be sent only if the value for the RetCode field of the reply
structure is KERN_SUCCESS and the value of the msgh_remote_port in the re-
ply structure is other than MACH_PORT_NULL. An error in the message send
or receive operation of other than MACH_SEND_INVALID_DEST terminates
the loop. The resultant error code is returned.

Mach 3 Server Writer’s Interfaces 15

mach_msg_server

PARAMETERS

demux
[in scalar] A pointer to a routine to be called for each message received.

max_size
[in scalar] The maximum size message to receive.

rcv_name
[in scalar] A receive right to a port.

RETURN VALUE

KERN_RESOURCE_SHORTAGE
Insufficient virtual address space for the receive and reply buffers.

Other MIG and mach_msg errors terminate the call.

RELATED INFORMATION
Functions: mach_msg, mig_reply_setup.

Data structures: mach_msg_header, mig_reply_header.

16 Mach 3 Server Writer’s Interfaces

Library Support Functions

mach_privileged_host_port

Function — Finds the privileged host control port

LIBRARY
libmach.a

#include <mach_privileged_ports.h>

SYNOPSIS

mach_port_t mach_privileged_host_port
();

DESCRIPTION
The mach_privileged_host_port function locates the privileged host control
port. This port allows the holder to obtain rights to any other port on the node
(with the exception of the device master port). This function will succeed only
for privileged tasks.

The call tries to find the host control port first by sending a special message (ID
999999) to the task’s bootstrap port, and, failing that, through the undocument-
ed CMU system call, task_by_pid (–33).

PARAMETERS
None

RETURN VALUE
Send rights to the host control port or MACH_PORT_NULL

Mach 3 Server Writer’s Interfaces 17

mach_task_self

mach_task_self

Macro — Returns the task self port

LIBRARY
libmach_sa.a, libmach.a

#include <mach.h>

SYNOPSIS

mach_port_t mach_task_self
();

DESCRIPTION
The mach_task_self macro returns send rights to the task’s own port. The in-
clude file <mach.h> redefines the kernel function to simply return the value
mach_task_self_, cached by the Mach run-time.

PARAMETERS
None

RETURN VALUE
Send rights to the task’s port.

RELATED INFORMATION
Functions: mach_task_self (kernel call).

18 Mach 3 Server Writer’s Interfaces

Library Support Functions

mig_dealloc_reply_port

Function — De-allocate the reply port for MIG interfaces

LIBRARY
libmach_sa.a, libmach.a, libthreads.a

Not declared anywhere.

SYNOPSIS

void mig_dealloc_reply_port
();

DESCRIPTION
The mig_dealloc_reply_port function is called by MIG interfaces after a time-
out on the reply port.

PARAMETERS
None

RETURN VALUE
None

RELATED INFORMATION
Functions: mig_get_reply_port.

Mach 3 Server Writer’s Interfaces 19

mig_get_reply_port

mig_get_reply_port

Function — Generate a reply port for MIG interfaces

LIBRARY
libmach_sa.a, libmach.a, libthreads.a

Not declared anywhere.

SYNOPSIS

mach_port_t mig_get_reply_port
();

DESCRIPTION
The mig_get_reply_port function is called by MIG interfaces when they need a
reply port.

PARAMETERS
None

RETURN VALUE
The MIG reply port

RELATED INFORMATION
Functions: mig_dealloc_reply_port.

20 Mach 3 Server Writer’s Interfaces

Library Support Functions

mig_init

Function — Prepares the task to perform MIG related MACH IPC functions

LIBRARY
libmach_sa.a, libmach.a, libthreads.a

Not declared anywhere.

SYNOPSIS

void mig_init
();

DESCRIPTION
The mig_init function prepares the task to use MIG related services. This call is
made automatically via _start when the task begins.

PARAMETERS
None

RETURN VALUE
None.

RELATED INFORMATION
Functions: _start, cthread_init.

Mach 3 Server Writer’s Interfaces 21

mig_reply_setup

mig_reply_setup

Function — Initialize a MIG reply message

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

void mig_reply_setup
(mach_msg_header_t* request,
mach_msg_header_t* reply);

DESCRIPTION
The mig_reply_setup function initializes the header of a reply message based
upon the contents of a client’s request for service. This initialization is normally
done as part of the processing done by a MIG generated server de-multiplexing
routine (normally sys_server). If, however, the MIG generated message typing
routines (normally sys_server_routine) are used instead, mig_reply_setup
would be used to perform the reply message initialization not done by these typ-
ing routines. Typical use is:

[1] mig_reply_setup (&request, &reply);
[2] if ((routine = sys1_server_routine (&request) != 0) ||
[3] (routine = sys2_server_routine (&request) != 0) ||
[4] (routine = sys3_server_routine (&request) != 0))
[5] (* routine) (&request, &reply);

PARAMETERS

request
[pointer to in structure] Request message from the client.

reply
[out structure] Initialized reply message.

RETURN VALUE
None.

RELATED INFORMATION
Functions: mach_msg, mach_msg_server.

22 Mach 3 Server Writer’s Interfaces

Library Support Functions

Data structures: mach_msg_header, mig_reply_header.

Mach 3 Server Writer’s Interfaces 23

mig_strncpy

mig_strncpy

Function — Copy a character string, null terminated, with count.

LIBRARY
libmach_sa.a, libmach.a

Not declared anywhere.

SYNOPSIS

int mig_strncpy
(char* dst,
char* src,
unsigned int length);

DESCRIPTION
The mig_strncpy function copies a character string from src to dst. The copy
terminates either when length-1 characters have been copied, or when a null
character is encountered, whichever comes first. This routine differs from
strncpy in that the resulting string is always null terminated.

PARAMETERS

dst
[out array of char] Destination of the copy.

src
[pointer to in array of char] Source of the copy.

length
[in scalar] Number of bytes to move.

RETURN VALUE
Length of the resultant string, including the null terminating byte.

RELATED INFORMATION
Functions: strncpy.

24 Mach 3 Server Writer’s Interfaces

Library Support Functions

name_server_port

Global Variable — Names the port to the name server

LIBRARY
libmach.a

#include <mach.h>

SYNOPSIS

extern mach_port_t name_server_port;

DESCRIPTION
The name_server_port variable contains the port name of a send right to the
name server. It is initialized by mach_init from the task’s set of registered ports.

RELATED INFORMATION
Functions: mach_ports_register.

Mach 3 Server Writer’s Interfaces 25

quit

quit

Function — Print message and exit

LIBRARY
libmach.a

Not declared anywhere.

SYNOPSIS

void quit
(int status,
char* format, ...);

DESCRIPTION
The quit function prints on standard error the message specified by the printf
argument list format,... and then exits.

PARAMETERS

status
[in scalar] The process’ return code.

format
[pointer to in array of char] A printf control string.

RETURN VALUE
None

RELATED INFORMATION
printf (3), exit(2), wait(2).

26 Mach 3 Server Writer’s Interfaces

Library Support Functions

round_page

Macro — Round a virtual address to a page boundary

LIBRARY
#include <mach.h>

SYNOPSIS

vm_offset_t round_page
(vm_offset_t x);

DESCRIPTION
The round_page macro rounds its virtual address argument to the nearest page
boundary.

PARAMETERS

x
[in scalar] Virtual address

RETURN VALUE
Rounded virtual address

RELATED INFORMATION
Functions: trunc_page.

Mach 3 Server Writer’s Interfaces 27

service_port

service_port

Global Variable — Names the port to the service server

LIBRARY
libmach.a

#include <mach.h>

SYNOPSIS

extern mach_port_t service_port;

DESCRIPTION
The service_port variable contains the port name of a send right to the service
server. It is initialized by mach_init from the task’s set of registered ports.

RELATED INFORMATION
Functions: mach_ports_register.

28 Mach 3 Server Writer’s Interfaces

Library Support Functions

slot_name

Function — Converts CPU type and subtype to human readable form

LIBRARY
libmach.a

Not declared anywhere.

SYNOPSIS

void slot_name
(cpu_type_t cpu_type,
cpu_subtype_t cpu_subtype,
char** cpu_name,
char** cpu_subname);

DESCRIPTION
The slot_name function converts the specified cpu_type / cpu_subtype pair to
their human readable counterparts. Two strings, which are statically allocated in
the library, corresponding to the type and subtype are passed back to the caller
in the cpu_name and cpu_subname parameters.

PARAMETERS

cpu_type
[in scalar] Type of the CPU, CPU_TYPE_VAX, CPU_TYPE_I386, etc.

cpu_subtype
[in scalar] Subtype of the CPU, CPU_SUBTYPE_VAX780,
CPU_SUBTYPE_AT386, etc.

cpu_name
[out array of char] Corresponding CPU type name

cpu_subname
[out array of char] Corresponding CPU subtype name

RETURN VALUE
None

Mach 3 Server Writer’s Interfaces 29

trunc_page

trunc_page

Macro — Truncate a virtual address to a page boundary

LIBRARY
#include <mach.h>

SYNOPSIS

vm_offset_t trunc_page
(vm_offset_t x);

DESCRIPTION
The trunc_page macro truncates its virtual address argument down to the near-
est page boundary.

PARAMETERS

x
[in scalar] Virtual address

RETURN VALUE
Truncated virtual address

RELATED INFORMATION
Functions: round_page.

30 Mach 3 Server Writer’s Interfaces

Library Support Functions

vm_page_size

Global Variable — Contains the page size for the current task.

LIBRARY
libmach_sa.a, libmach.a

#include <mach.h>

SYNOPSIS

extern vm_size_t vm_page_size;

DESCRIPTION
The vm_page_size variable contains the task’s page size, in bytes.

RELATED INFORMATION
Functions: vm_statistics.

Mach 3 Server Writer’s Interfaces 31

CHAPTER 3 C Thread Functions

This chapter describes functions that provide thread support for C programs.

Note that including libthreads.a redefines some system internal routines (mig_init ,
mig_get_reply_port and mig_dealloc_reply_port). libthreads.a must be linked prior to
libmach.a when used.

All of the functions defined in this chapter are in libthreads.a and defined in <cthread-
s.h>.

32 Mach 3 Server Writer’s Interfaces

C Thread Functions

condition_alloc

Macro — Dynamically allocate a condition variable

SYNOPSIS

condition_t condition_alloc
();

DESCRIPTION
The condition_alloc macro dynamically allocates and initializes a condition
variable.

PARAMETERS
None

RETURN VALUE
A pointer to the condition variable.

RELATED INFORMATION
Functions: condition_free.

Mach 3 Server Writer’s Interfaces 33

condition_broadcast

condition_broadcast

Macro — Broadcast a status change in a condition variable

SYNOPSIS

void condition_broadcast
(condition_t c);

DESCRIPTION
The condition_broadcast macro indicates that a status change has occurred as-
sociated with condition variable c. All C threads waiting for this condition vari-
able will be wakened.

PARAMETERS

c
[pointer to in structure] A condition variable indicating the status
change

NOTES
The mutex named in the corresponding condition_wait call must be held dur-
ing this call or the results are unspecified.

RETURN VALUE
None

RELATED INFORMATION
Functions: condition_signal, condition_wait.

34 Mach 3 Server Writer’s Interfaces

C Thread Functions

condition_clear

Macro — Finalizes use of a user allocated condition variable

SYNOPSIS

void condition_clear
(condition_t c);

DESCRIPTION
The condition_clear macro finalizes use of a user allocated condition variable.
In this context, a user allocated variable is one not obtained via condition_alloc
(one initialized with condition_init). Finalizing a condition variable is also con-
sidered to broadcast the condition so associated.

PARAMETERS

c
[pointer to in structure] A condition variable

RETURN VALUE
None

RELATED INFORMATION
Functions: condition_init .

Mach 3 Server Writer’s Interfaces 35

condition_free

condition_free

Macro — Free a dynamically allocated condition variable

SYNOPSIS

void condition_free
(condition_t c);

DESCRIPTION
The condition_free macro frees a dynamically allocated condition variable (one
obtained with condition_alloc). Freeing a condition variable is considered to
broadcast the condition so associated.

PARAMETERS

c
[pointer to in structure] A condition variable

RETURN VALUE
None

RELATED INFORMATION
Functions: condition_alloc.

36 Mach 3 Server Writer’s Interfaces

C Thread Functions

condition_init

Macro — Initialize a user allocated condition variable

SYNOPSIS

void condition_init
(condition_t c);

DESCRIPTION
The condition_init macro initializes a user allocated condition variable. In this
context, a user allocated variable is one not obtained via condition_alloc.

PARAMETERS

c
[pointer to in structure] A condition variable

RETURN VALUE
None

RELATED INFORMATION
Functions: condition_clear.

Mach 3 Server Writer’s Interfaces 37

condition_name

condition_name

Macro — Return a name associated with a condition variable

SYNOPSIS

char* condition_name
(condition_t c);

DESCRIPTION
The condition_name macro returns the name associated with the given condi-
tion variable.IF there is no associated name, “?” is returned.

PARAMETERS

c
[pointer to in structure] A condition variable

RETURN VALUE
A pointer to the associated name

RELATED INFORMATION
Functions: condition_set_name.

38 Mach 3 Server Writer’s Interfaces

C Thread Functions

condition_set_name

Macro — Associate a name with a condition variable

SYNOPSIS

void condition_set_name
(condition_t c,
char* name);

DESCRIPTION
The condition_set_name macro associates a name with a condition variable.
Currently, these names are not used for anything; they can be retrieved with con-
dition_name. Note that only a pointer to the name is associated with the condi-
tion variable; the name string must not be de-allocated until the name
association is broken.

PARAMETERS

c
[pointer to in structure] A condition variable

name
[pointer to in array of char] Name to associate

RETURN VALUE
None

RELATED INFORMATION
Functions: condition_name.

Mach 3 Server Writer’s Interfaces 39

condition_signal

condition_signal

Macro — Signal that a condition has occurred

SYNOPSIS

void condition_signal
(condition_t c);

DESCRIPTION
The condition_signal macro indicates that a status change has occurred associ-
ated with condition variable c. At least one C thread waiting for this condition
variable will be wakened.

PARAMETERS

c
[pointer to in structure] A condition variable indicating the status
change

NOTES
The mutex named in the corresponding condition_wait call must be held dur-
ing this call or the results are unspecified.

RETURN VALUE
None.

RELATED INFORMATION
Functions: condition_broadcast, condition_wait.

40 Mach 3 Server Writer’s Interfaces

C Thread Functions

condition_wait

Function — Wait for a status change associated with a condition variable

SYNOPSIS

void condition_wait
(condition_t c,
mutex_t m);

DESCRIPTION
The condition_wait function waits for a status change associated with some
shared data. The calling thread is assumed to hold a mutex, m, protecting the
data locked. This call releases the mutex and waits for the condition variable c
to be signaled, indicating a change to the shared data. This call returns at some
point in time after this event, with the mutex once again locked. The time be-
tween the signalling of the condition variable and the locking of the mutex is ar-
bitrary; it is possible that some other thread could have locked the mutex and
performed yet other changes (and condition signalling) prior to this thread re-ob-
taining the mutex.

PARAMETERS

c
[pointer to in structure] The condition variable indicating the status
change

m
[pointer to in structure] A mutex that locks the data associated with the
condition variable

NOTES
The typical use of this function is in a loop as follows:

[1] mutex_t m;
[2] condition_t c;
[3] mutex_lock (m);
[4] while (...status of shared data is not okay...)
[5] condition_wait (c, m);
[6] ...use shared data...
[7] mutex_unlock (m);

RETURN VALUE
None.

Mach 3 Server Writer’s Interfaces 41

condition_wait

RELATED INFORMATION
Functions: condition_signal, condition_broadcast.

42 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_count

Function — Return the current number of C thread

SYNOPSIS

int cthread_count
();

DESCRIPTION
The cthread_count function returns the current number of C threads. A C
thread is counted as no longer existing when it returns from its top-level func-
tion (calls cthread_exit), not when some other thread detaches it or joins with it.

PARAMETERS
None

RETURN VALUE
Number of current C threads

RELATED INFORMATION
Functions: cthread_fork, cthread_exit.

Mach 3 Server Writer’s Interfaces 43

cthread_data

cthread_data

Macro — Returned data associated with a thread

SYNOPSIS

any_t cthread_data
(cthread_t t);

DESCRIPTION
The cthread_data macro returns the data value associated with the given
thread. This value provides a simple form of thread-specific “global” data. More
elaborate mechanisms may be built upon this single value.

After a thread exits, any attempt to get or set its associated data is illegal, so any
de-allocation or other cleanup of the data must be done before the thread exits.
It is always safe to access the data associated with the caller’s own thread
(cthread_self), or with a thread that has not yet been joined or detached.

PARAMETERS

t
[pointer to in structure] A thread identifier

RETURN VALUE
The thread’s associated data value

RELATED INFORMATION
Functions: cthread_set_data.

44 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_detach

Function — Detach a C thread from all threads

SYNOPSIS

void cthread_detach
(cthread_t t);

DESCRIPTION
The cthread_detach function indicates that thread t will never be joined.

PARAMETERS

t
[pointer to in structure] Thread identifier

NOTES
Since the fact that a thread is to be detached is normally known when it is creat-
ed, this call is normally used as: cthread_detach(cthread_fork(func, arg));

RETURN VALUE
None.

RELATED INFORMATION
Functions: cthread_fork, cthread_join.

Mach 3 Server Writer’s Interfaces 45

cthread_exit

cthread_exit

Function — Terminate the current C thread

SYNOPSIS

void cthread_exit
(any_t result);

DESCRIPTION
The cthread_exit function terminates the calling thread. This call is implicit
when the top-level function of a thread returns, in which case the argument to
cthread_exit is the return value from the top-level function, but it can also be
called explicitly. The result is made available to a thread that joins with this
thread (cthread_join), or discarded if the thread is detached. If this is the first
(main) thread, its termination will not terminate the task, but will instead wait
for all other C threads to terminate and then terminate the task. The exit status
for the task becomes the value of result.

PARAMETERS

result
[in scalar] A value to be given to cthread_join

RETURN VALUE
None.

RELATED INFORMATION
Functions: cthread_fork, cthread_join, cthread_detach.

46 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_fork

Function — Create a new C thread

SYNOPSIS

cthread_t cthread_fork
(any_t (*func) (any_t arg), any_t arg);

DESCRIPTION
The cthread_fork function creates a new thread which will execute concurrent-
ly with the current thread. This is the sole means of creating new threads. The
new thread will execute the following call:

result = (*func) (arg);

The result value from this call (assuming the call does not terminate itself via
cthread_exit) is available via cthread_join. The call to cthread_fork returns a
thread identifier useful for a call to cthread_detach or cthread_join. A thread
may either be joined or detached only once. If the thread is neither joined nor
detached, the thread’s associated data will never be released.

PARAMETERS

func
[in scalar] Top-level function to execute in the new thread.

arg
[in scalar] Single argument to pass to func.

RETURN VALUE
A thread identifier naming the new thread.

RELATED INFORMATION
Functions: cthread_exit, cthread_join, cthread_detach.

Mach 3 Server Writer’s Interfaces 47

cthread_init

cthread_init

Function — Initialize the C threads package.

SYNOPSIS

int cthread_init
();

DESCRIPTION
The cthread_init function initializes the C threads package. It is automatically
called by _start when the C threads package is included when linking. This call
also initializes the multi-threaded MIG routines. After this call, the initial point
of control in the task becomes the first C thread. When this first thread termi-
nates, it does not immediately terminate the task. It waits for all threads to termi-
nate before so doing. The exit status for the task becomes the thread exit status
of this first (main) thread.

PARAMETERS
None

RETURN VALUE
The top of the first thread’s stack. (The return type of this function is incorrect.)

RELATED INFORMATION
Functions: _start.

48 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_join

Function — Join with a C thread

SYNOPSIS

any_t cthread_join
(cthread_t t);

DESCRIPTION
The cthread_join function suspends the caller until the thread t terminates.

PARAMETERS

t
[pointer to in structure] A thread identifier

RETURN VALUE
Either the result of t’s top-level function (if it returned normally) or the argu-
ment with which t explicitly called cthread_exit

RELATED INFORMATION
Functions: cthread_fork, cthread_detach, cthread_exit.

Mach 3 Server Writer’s Interfaces 49

cthread_kernel_limit

cthread_kernel_limit

Function — Get the kernel thread limit for C threads

LIBRARY
Not defined anywhere.

SYNOPSIS

int cthread_kernel_limit
();

DESCRIPTION
The cthread_kernel_limit function returns the current limit on the number of
kernel threads to use to support C threads. A value of zero is considered as no
limit.

PARAMETERS
None

RETURN VALUE
The current kernel thread limit.

RELATED INFORMATION
Functions: cthread_set_kernel_limit, cthread_limit , cthread_set_limit.

50 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_limit

Function — Return the limit on active C threads

SYNOPSIS

int cthread_limit
();

DESCRIPTION
The cthread_limit function returns the limit on the number of active C threads.
In this context, a C threads is considered as active if it can be considered for exe-
cution by a supporting kernel thread (that is, it has an assigned cproc). The actu-
al number of C threads that can actually be in execution at any time is governed
by the thread kernel limit. A value of zero is considered as no limit.

PARAMETERS
None

RETURN VALUE
The number of allowed active C threads

RELATED INFORMATION
Functions: cthread_set_limit, cthread_kernel_limit, cthread_set_kernel_lim-
it .

Mach 3 Server Writer’s Interfaces 51

cthread_mach_msg

cthread_mach_msg

Function — C thread optimized MACH message routine

LIBRARY
Not defined anywhere.

SYNOPSIS

mach_msg_return_t cthread_mach_msg
(mach_msg_header_t msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_t notify,
int min,
int max);

DESCRIPTION
The cthread_mach_msg function performs a mach_msg call. (It is assumed
that the MACH_RCV_MSG is specified.) This call differs from mach_msg
only in as much as that this call limits the number of threads that may be active-
ly servicing a given port (or port set). In this sense, “actively servicing” means
that the C thread is allowed to wait for a message from the port. This call, as
well as cthread_msg_active, declare a C thread to be actively servicing a port.
When a C thread blocks performing a kernel function (such as mach_msg), it
blocks its underlying MACH thread as well. If this thread’s waiting would ex-
ceed the max value established at the first wait from the port, this thread will
send its message (if there is one), but the C thread will block instead of doing
the receive at this time. In this way, the underlying MACH thread is free to per-
form other work. When the number of C threads (and corresponding MACH
threads) actively servicing this port falls below the min value, a C thread will be
wakened to then perform its message receive (and become an active listener for
this port as a result), blocking itself in the message receive (and thereby block-
ing its MACH thread as well).

A C thread cease to be an active receiver for a port when it calls cthread_-
mach_msg with some different port, or when it calls cthread_msg_busy.

PARAMETERS

msg
[pointer to in/out structure] A message buffer. This should be aligned
on a long-word boundary.

52 Mach 3 Server Writer’s Interfaces

C Thread Functions

option
[in scalar] Refer to mach_msg for a description of this parameter.

send_size
[in scalar] Refer to mach_msg for a description of this parameter.

rcv_size
[in scalar] Refer to mach_msg for a description of this parameter.

rcv_name
[in scalar] Refer to mach_msg for a description of this parameter.

timeout
[in scalar] Refer to mach_msg for a description of this parameter.

notify
[in scalar] Refer to mach_msg for a description of this parameter.

min
[in scalar] The maximum number of threads that can be left waiting for
messages from rcv_name before other threads are released.

max
[in scalar] The maximum number of threads that can be waiting for
messages from rcv_name.

RETURN VALUE
Return value from the mach_msg call.

RELATED INFORMATION
Functions: mach_msg, cthread_msg_active, cthread_msg_busy.

Mach 3 Server Writer’s Interfaces 53

cthread_msg_active

cthread_msg_active

Function — Mark this thread as actively servicing a port

LIBRARY
Not defined anywhere.

SYNOPSIS

void cthread_msg_active
(mach_port_t port,
int min,
int max);

DESCRIPTION
The cthread_msg_active function declares that this C thread will be actively re-
ceiving (and thereby waiting for) messages from the specified port. By perform-
ing this call prior to any cthread_mach_msg calls for port, this thread is
reserved as a listener for the port, and is guaranteed that it can receive without
its C thread being blocked waiting for other threads to cease being active receiv-
ers for this port.

PARAMETERS

port
[in scalar] Receive port this thread will service

min
[in scalar] The maximum number of threads that can be left waiting for
messages from port before other threads are released.

max
[in scalar] The maximum number of threads that can be waiting for
messages from port.

RETURN VALUE
None

RELATED INFORMATION
Functions: mach_msg, cthread_mach_msg, cthread_msg_busy.

54 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_msg_busy

Function — Cease to be an active receiver for a port

LIBRARY
Not defined anywhere.

SYNOPSIS

void cthread_msg_busy
(mach_port_t port,
int min,
int max);

DESCRIPTION
The cthread_msg_busy function declares that this C thread will no longer be
an active listener for its port. A thread is declared an active listener for a port ei-
ther via cthread_mach_msg or cthread_msg_active. If, by releasing active lis-
tenership (either via this call or a cthread_mach_msg call specifying a
different port), the active listeners falls below the minimum value for the port, a
C thread will be wakened so it can perform its receive operation.

PARAMETERS

port
[in scalar] Port for which this thread will no longer be a receiver

min
[in scalar] Duplicates to match cthread_msg_active.

max
[in scalar] Duplicates to match cthread_msg_active.

RETURN VALUE
None.

RELATED INFORMATION
Functions: mach_msg, cthread_msg_active, cthread_mach_msg.

Mach 3 Server Writer’s Interfaces 55

cthread_name

cthread_name

Function — Return the name associated with a thread

SYNOPSIS

char* cthread_name
(cthread_t t);

DESCRIPTION
The cthread_name function returns a pointer to the name associated with a
thread. If the thread has no associated name, “?” is returned.

PARAMETERS

t
[pointer to in structure] A thread identifier

RETURN VALUE
The thread’s associated name

RELATED INFORMATION
Functions: cthread_set_name.

56 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_self

Macro — Return the caller’s thread identifier

SYNOPSIS

cthread_t cthread_self
();

DESCRIPTION
The cthread_self macro returns the caller’s own thread identifier, which is the
same value that was returned by cthread_fork to the creator of the thread. The
thread identifier uniquely identifies the thread, and hence may be used as a key
in data structures that associate user data with individual threads. Since thread
identifiers may be re-used by the underlying implementation, the programmer
should be careful to clean up such associations when threads exit

PARAMETERS
None

RETURN VALUE
The thread’s own identifier

RELATED INFORMATION
Functions: cthread_fork.

Mach 3 Server Writer’s Interfaces 57

cthread_set_data

cthread_set_data

Macro — Associate a data value with a thread

SYNOPSIS

void cthread_set_data
(cthread_t t,
any_t data);

DESCRIPTION
The cthread_set_data macro associates a single data value with a thread. This
value may be subsequently retrieved by cthread_data.

PARAMETERS

t
[pointer to in structure] A thread identifier

data
[in scalar] A single data value to associate with the thread

RETURN VALUE
None

RELATED INFORMATION
Functions: cthread_data.

58 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_set_kernel_limit

Function — Set the maximum number of kernel threads for C threads

LIBRARY
Not defined anywhere.

SYNOPSIS

void cthread_set_kernel_limit
(int n);

DESCRIPTION
The cthread_set_kernel_limit function sets the limit on the number of kernel
threads to use to support C threads. If the current number of kernel threads ex-
ceeds this value, none are destroyed. A value of zero is considered as no limit.

PARAMETERS

n
[in scalar] Maximum number of kernel threads

RETURN VALUE
None.

RELATED INFORMATION
Functions: cthread_kernel_limit, cthread_limit , cthread_set_limit.

Mach 3 Server Writer’s Interfaces 59

cthread_set_limit

cthread_set_limit

Function — Set the limit of active C threads

SYNOPSIS

void cthread_set_limit
(int n);

DESCRIPTION
The cthread_set_limit function limits the number of active C threads. In this
context, a C thread is considered as active if it can be considered for execution
by a supporting kernel thread (that is, it has an assigned cproc). The actual num-
ber of C threads that can actually be in execution at any time is governed by the
thread kernel limit. A value of zero is considered as no limit.

PARAMETERS

n
[in scalar] Limit on active C threads

RETURN VALUE
None

RELATED INFORMATION
Functions: cthread_limit , cthread_kernel_limit, cthread_set_kernel_limit.

60 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_set_name

Function — Associate a name with a thread

SYNOPSIS

void cthread_set_name
(cthread_t t,
char* name);

DESCRIPTION
The cthread_set_name function associates a name with a thread. Currently,
these names are not used for anything; they can be retrieved with cthread_-
name. The initial thread is automatically given a name of “main”. Note that
only a pointer to the name is associated with the thread; the name string must
not be de-allocated until the name association is broken.

PARAMETERS

t
[pointer to in structure] A thread identifier

name
[pointer to in array of char] A name to associate

RETURN VALUE
None

RELATED INFORMATION
Functions: cthread_name.

Mach 3 Server Writer’s Interfaces 61

cthread_stack_size

cthread_stack_size

Global Variable — Size (in bytes) of the stack allocated to a C thread

SYNOPSIS

extern vm_size_t cthread_stack_size;

DESCRIPTION
The cthread_stack_size variable contains the size in bytes of a C thread’s
stack. This value is normally initialized to a default value when the task is ini-
tialized. It may be set to a value at compile time by declaring:

vm_size_t cthread_stack_size = N;

NOTES
cthread_stack_size must be a multiple of the system page size.

62 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_unwire

Function — Un-bind a C thread from a MACH thread.

LIBRARY
Not defined anywhere.

SYNOPSIS

void cthread_unwire
();

DESCRIPTION
The cthread_unwire function breaks the binding of the current C thread from
its MACH thread. After this call, the MACH thread is free to service any un-
bound C thread, and this C thread may be serviced by any unbound MACH
thread.

PARAMETERS
None

RETURN VALUE
None.

RELATED INFORMATION
Functions: cthread_wire.

Mach 3 Server Writer’s Interfaces 63

cthread_wire

cthread_wire

Function — Bind a C thread to a MACH thread

LIBRARY
Not defined anywhere.

SYNOPSIS

void cthread_wire
();

DESCRIPTION
The cthread_wire function binds the calling C thread to the MACH thread cur-
rently executing it. After this, the current MACH thread is dedicated to running
only this C thread, and this C thread will run using only this MACH thread.
This is done to guarantee a free MACH thread for the activities of this C thread.

PARAMETERS
None

RETURN VALUE
None.

RELATED INFORMATION
Functions: cthread_unwire.

64 Mach 3 Server Writer’s Interfaces

C Thread Functions

cthread_yield

Function — Schedule another thread

SYNOPSIS

void cthread_yield
();

DESCRIPTION
The cthread_yield function provides a hint to the scheduler, suggesting that this
would be a convenient point to schedule another thread to run on the current pro-
cessor. If the current C thread is bound to a MACH thread, this call is equivalent
to switch_pri. Otherwise, an attempt is made to use this MACH thread to ser-
vice some other C thread; if no such runable C thread exists, switch_pri is
called. Since multiple C threads can be serviced by a single MACH thread, and
there is no pre-emption mechanism that will forcibly provide this servicing, this
call may be needed to avoid starvation of threads.

PARAMETERS
None

RETURN VALUE
None.

RELATED INFORMATION
Functions: swtch, swtch_pri, thread_switch.

Mach 3 Server Writer’s Interfaces 65

mutex_alloc

mutex_alloc

Macro — Allocate a mutex variable

SYNOPSIS

mutex_t mutex_alloc
();

DESCRIPTION
The mutex_alloc macro allocates heap storage properly constructed as a mutex
variable.

PARAMETERS
None

RETURN VALUE
A pointer to a mutex

RELATED INFORMATION
Functions: mutex_free.

66 Mach 3 Server Writer’s Interfaces

C Thread Functions

mutex_clear

Macro — Finalize use of a user allocated mutex variable

SYNOPSIS

void mutex_clear
(mutex_t m);

DESCRIPTION
The mutex_clear macro finalizes the use of a user allocated mutex variable. A
user allocated mutex here means one for which the storage was obtained by the
user in ways other than mutex_alloc, and subsequently initialized by mutex_-
init .

PARAMETERS

m
[pointer to in structure] A mutex

RETURN VALUE
None

RELATED INFORMATION
Functions: mutex_init.

Mach 3 Server Writer’s Interfaces 67

mutex_free

mutex_free

Macro — Free a dynamically allocated mutex variable

SYNOPSIS

void mutex_free
(mutex_t m);

DESCRIPTION
The mutex_free macro frees a dynamically allocated mutex variable obtained
via mutex_alloc.

PARAMETERS

m
[pointer to in structure] A mutex

RETURN VALUE
None

RELATED INFORMATION
Functions: mutex_alloc.

68 Mach 3 Server Writer’s Interfaces

C Thread Functions

mutex_init

Macro — Initialize a user allocated mutex variable

SYNOPSIS

void mutex_init
(mutex_t m);

DESCRIPTION
The mutex_init macro initializes user allocated storage to be a mutex variable.
In this context, user allocated storage is meant to be any storage other than that
obtained via mutex_alloc.

PARAMETERS

m
[pointer to in structure] A mutex variable

RETURN VALUE
None

RELATED INFORMATION
Functions: mutex_clear.

Mach 3 Server Writer’s Interfaces 69

mutex_lock

mutex_lock

Macro — Lock a mutex

SYNOPSIS

void mutex_lock
(mutex_t m);

DESCRIPTION
The mutex_lock macro locks the specified mutex. It blocks until it succeeds. If
several threads attempt to lock the same mutex concurrently, one will succeed,
and the others will block until m is unlocked. The case of a thread attempting to
lock a mutex it already holds is not treated specially; deadlock will result.

PARAMETERS

m
[pointer to in structure] A mutex

RETURN VALUE
None

RELATED INFORMATION
Functions: mutex_try_lock, mutex_unlock.

70 Mach 3 Server Writer’s Interfaces

C Thread Functions

mutex_name

Macro — Return the name associated with a mutex

SYNOPSIS

char* mutex_name
(mutex_t m);

DESCRIPTION
The mutex_name macro returns the name associated with a mutex. It the mutex
has no associated name, “?” is returned.

PARAMETERS

m
[pointer to in structure] A mutex

RETURN VALUE
The mutex’ associated name

RELATED INFORMATION
Functions: mutex_set_name.

Mach 3 Server Writer’s Interfaces 71

mutex_set_name

mutex_set_name

Macro — Associate a name with a mutex

SYNOPSIS

void mutex_set_name
(mutex_t m,
char* name);

DESCRIPTION
The mutex_set_name macro associates a name with a mutex variable. Current-
ly, these names are not used for anything; they can be retrieved with mutex_-
name. Note that only a pointer to the name is associated with the mutex
variable; the name string must not be de-allocated until the name association is
broken.

PARAMETERS

m
[pointer to in structure] A mutex

name
[pointer to in array of char] Name to associate with m

RETURN VALUE
None

RELATED INFORMATION
Functions: mutex_name.

72 Mach 3 Server Writer’s Interfaces

C Thread Functions

mutex_try_lock

Macro — Attempt to lock a mutex

SYNOPSIS

boolean_t mutex_try_lock
(mutex_t m);

DESCRIPTION
The mutex_try_lock macro attempts to lock the mutex m, like mutex_lock.
This macro does not block waiting for the mutex to become locked, returning a
status in this case.

PARAMETERS

m
[pointer to in structure] A mutex

RETURN VALUE

TRUE
The mutex is locked to this thread.

FALSE
The mutex is locked to some other thread.

RELATED INFORMATION
Functions: mutex_lock, mutex_unlock.

Mach 3 Server Writer’s Interfaces 73

mutex_unlock

mutex_unlock

Macro — Unlock a mutex

SYNOPSIS

void mutex_unlock
(mutex_t m);

DESCRIPTION
The mutex_unlock macro unlocks the specified mutex, giving other threads a
chance to lock it.

PARAMETERS

m
[pointer to in structure] A mutex

RETURN VALUE
None

RELATED INFORMATION
Functions: mutex_lock, mutex_try_lock.

74 Mach 3 Server Writer’s Interfaces

C Thread Functions

spin_lock

Macro — Lock a spin lock.

SYNOPSIS

void spin_lock
(spin_lock_t* p);

DESCRIPTION
The spin_lock macro locks the specified spin lock. It does not return until the
lock is locked to this thread. A spin lock is a lower overhead lock than a mutex,
and as a result lacks some of the functionality of a mutex. A spin lock is so
named because a thread waiting for the lock “spins”, wasting CPU time until
the lock is released by the holding thread. (If the C threads package was built
with the SPIN_RESCHED option, which it is by default, a switch_pri call will
be done while waiting.) A spin lock is normally used to lock regions of short du-
ration, when it is expected that any thread holding the lock will quickly release
it.

PARAMETERS

p
[pointer to in scalar] The spin lock to lock.

RETURN VALUE
None.

RELATED INFORMATION
Functions: spin_try_lock, spin_unlock.

Mach 3 Server Writer’s Interfaces 75

spin_try_lock

spin_try_lock

Function — Attempt to lock a spin lock

SYNOPSIS

boolean_t spin_try_lock
(spin_lock_t* p);

DESCRIPTION
The spin_try_lock function. makes a single attempt to lock p. The call does not
block if the attempt to lock is unsuccessful.

PARAMETERS

p
[pointer to in scalar] The spin lock to lock.

RETURN VALUE

TRUE
if the lock is now locked to this thread

FALSE
if the lock is still locked to some other thread

RELATED INFORMATION
Functions: spin_lock, spin_unlock.

76 Mach 3 Server Writer’s Interfaces

C Thread Functions

spin_unlock

Function — Unlock a spin lock

SYNOPSIS

void spin_unlock
(spin_lock_t* p);

DESCRIPTION
The spin_unlock function unlocks the specified spin lock. This routine does not
check to see if the lock was locked, nor that it was locked to this thread.

PARAMETERS

p
[pointer to in scalar] The spin lock to be unlocked.

RETURN VALUE
None.

RELATED INFORMATION
Functions: spin_try_lock, spin_lock.

Mach 3 Server Writer’s Interfaces 77

CHAPTER 4 Name Server

The name server provides a registry mapping service names to ports attached to the serv-
ers providing the named service.

78 Mach 3 Server Writer’s Interfaces

Name Server

netname_check_in

Function — Register a server

LIBRARY
libmach.a

#include <servers/netname.h>

SYNOPSIS

kern_return_t netname_check_in
(mach_port_t server_port,
netname_name_t port_name,
mach_port_t signature,
mach_port_t port_id);

DESCRIPTION
The netname_check_in function registers the server receiving requests from
port port_id that provides the service described / named by port_name. If the
server is already known, signature must match that supplied when the server
was previously registered. The signature value must be provided on all subse-
quent requests that affect this name to port mapping.

PARAMETERS

server_port
[in scalar] Name server port

port_name
[pointer to in array of char] String naming the service being provided

signature
[in scalar] A port used to restrict who can re-register or de-register the
server

port_id
[in scalar] Port to the server

RETURN VALUE

NETNAME_SUCCESS
The server was registered.

Mach 3 Server Writer’s Interfaces 79

netname_check_in

NETNAME_NOT_YOURS
An attempt was made to re-register a known server and the signature
value did not match.

KERN_RESOURCE_SHORTAGE
Too many servers are being registered.

RELATED INFORMATION
Functions: netname_check_out, netname_look_up, netname_version.

80 Mach 3 Server Writer’s Interfaces

Name Server

netname_check_out

Function — De-register a server

LIBRARY
libmach.a

#include <servers/netname.h>

SYNOPSIS

kern_return_t netname_check_out
(mach_port_t server_port,
netname_name_t port_name,
mach_port_t signature);

DESCRIPTION
The netname_check_out function breaks the association between a service
name and the registered port.

PARAMETERS

server_port
[in scalar] Name server. port

port_name
[pointer to in array of char] The service name to be de-registered.

signature
[in scalar] The value of the signature port used when registering the
server.

RETURN VALUE

NETNAME_SUCCESS
The server was de-registered.

NETNAME_NOT_YOURS
An attempt was made to de-register a known server and the signature
value did not match.

NETNAME_NOT_CHECKED_IN
No server is known by that name.

Mach 3 Server Writer’s Interfaces 81

netname_check_out

RELATED INFORMATION
Functions: netname_check_in, netname_look_up, netname_version.

82 Mach 3 Server Writer’s Interfaces

Name Server

netname_look_up

Function — Return a port to a named server

LIBRARY
libmach.a

#include <servers/netname.h>

SYNOPSIS

kern_return_t netname_look_up
(mach_port_t server_port,
netname_name_t host_name,
netname_name_t port_name,
mach_port_t* port_id);

DESCRIPTION
The netname_look_up function returns send rights to the port associated with a
given service name.

PARAMETERS

server_port
[in scalar] Name server port

host_name
[pointer to in array of char] String specifying a particular host whose
server is desired. A null string implies the current host. See the notes
below.

port_name
[pointer to in array of char] The name of the service desired.

port_id
[out scalar] Send right to the port associated with the service

NOTES
The use of the host_name parameter depends on the name service involved.

The snames name server provides a single local name space only. The host_-
name parameter is ignored. All clients wishing to use the name space must have
the port to the single snames server registered as their name server port.

Mach 3 Server Writer’s Interfaces 83

netname_look_up

The original Net Name server (part of the Net Message server) provides a set of
per-node name spaces visible to one another. Clients on a node have as their reg-
istered name server port the port to the local name server. With this port they
can look-up and check-in servers on their local node (by setting host_name to
““). With the host_name parameter to netname_look_up, they can locate serv-
ers on other nodes, including other nodes’ name servers (checked-in as
“NameServer”).

RETURN VALUE

NETNAME_SUCCESS
The server port was returned.

NETNAME_NOT_CHECKED_IN
No service is known by the name (on the given host).

RELATED INFORMATION
Functions: netname_check_in, netname_check_out, netname_version.

84 Mach 3 Server Writer’s Interfaces

Name Server

netname_version

Function — Return a version string describing the name server

LIBRARY
libmach.a

#include <servers/netname.h>

SYNOPSIS

kern_return_t netname_version
(mach_port_t server_port,
netname_name_t version);

DESCRIPTION
The netname_version function returns a string naming which name server and
which version is responding to server_port.

PARAMETERS

server_port
[in scalar] Name server port

version
[out array of char] Version string

RETURN VALUE

KERN_SUCCESS
Version string returned

RELATED INFORMATION
Functions: netname_check_in, netname_check_out, netname_look_up.

Mach 3 Server Writer’s Interfaces 85

CHAPTER 5 NetMemory Server

The netmemory server provides shared memory objects whose contents are maintained
consistently when mapped by multiple hosts.

86 Mach 3 Server Writer’s Interfaces

NetMemory Server

netmemory_cache

Function — Create a Mach memory object from a netmemory object

LIBRARY
libmach.a

Not declared anywhere.

SYNOPSIS

kern_return_t netmemory_cache
(mach_port_t netmemory_server,
mach_port_t netmemory_object,
mach_port_t* memory_object);

DESCRIPTION
The netmemory_cache function creates a Mach memory object on the local
host given a netmemory object. The resulting memory object is suitable as a pa-
rameter to vm_map. The external memory manager for the resulting memory
object is the local netmemory server which will co-ordinate with the other net-
memory servers to consistently maintain the underlying netmemory object.

PARAMETERS

netmemory_server
[in scalar] Request port to the local netmemory server.

netmemory_object
[in scalar] Port representing the netmemory object

memory_object
[out scalar] Mach memory object suitable for vm_map

RETURN VALUE

NETMEMORY_SUCCESS
Operation succeeded

NETMEMORY_RESOURCE
The server could not allocate sufficient resources

NETMEMORY_BAD_PARAMETER
Invalid parameter supplied

Mach 3 Server Writer’s Interfaces 87

netmemory_cache

KERN_FAILURE
netmemory_server does not name a known service.

RELATED INFORMATION
Functions: netmemory_create, netmemory_destroy.

88 Mach 3 Server Writer’s Interfaces

NetMemory Server

netmemory_create

Function — Create a netmemory object

LIBRARY
libmach.a

Not declared anywhere.

SYNOPSIS

kern_return_t netmemory_create
(mach_port_t netmemory_server,
vm_size_t object_size,
mach_port_t* netmemory_object,
mach_port_t* netmemory_control);

DESCRIPTION
The netmemory_create function creates a netmemory object. The result is two
ports: a netmemory_control port used for control operations upon the netmemo-
ry object (namely, object deletion) and a netmemory_object port which names
the object for the netmemory_cache operation. Note that netmemory_cache
must be invoked upon this netmemory_object port on each host to obtain a valid
Mach memory object for use with vm_map.

PARAMETERS

netmemory_server
[in scalar] Request port to the netmemory server.

object_size
[in scalar] Size of the object in bytes

netmemory_object
[out scalar] Port representing the netmemory object

netmemory_control
[out scalar] Port used for control operations on the netmemory object

RETURN VALUE

NETMEMORY_SUCCESS
Operation succeeded

Mach 3 Server Writer’s Interfaces 89

netmemory_create

NETMEMORY_RESOURCE
The server could not allocate sufficient resources

NETMEMORY_BAD_PARAMETER
Invalid parameter supplied

KERN_FAILURE
netmemory_server does not name a known service.

RELATED INFORMATION
Functions: netmemory_cache, netmemory_destroy.

90 Mach 3 Server Writer’s Interfaces

NetMemory Server

netmemory_destroy

Function — Destroy a netmemory object

LIBRARY
libmach.a

Not declared anywhere.

SYNOPSIS

kern_return_t netmemory_destroy
(mach_port_t netmemory_control);

DESCRIPTION
The netmemory_destroy function destroys the netmemory object.

PARAMETERS

netmemory_control
[in scalar] Port used for control operations on the netmemory object

RETURN VALUE

NETMEMORY_SUCCESS
Operation succeeded

KERN_FAILURE
netmemory_control does not name a valid object

RELATED INFORMATION
Functions: netmemory_cache, netmemory_create.

Mach 3 Server Writer’s Interfaces 91

CHAPTER 6 Service Server

The service server provides a registry for the service server itself, the name server and
the environment server. It exists so that the ports for these servers can be created at sys-
tem initialization while the servers themselves are initialized later.

92 Mach 3 Server Writer’s Interfaces

Service Server

service_checkin

Function — Announce the presence of a base Mach server

LIBRARY
libmach.a

#include <servers/service.h>

SYNOPSIS

kern_return_t service_checkin
(mach_port_t service_request,
mach_port_t service_desired,
mach_port_t* service_granted);

DESCRIPTION
The service_checkin function registers a base Mach server. The service request
port, which up to this time was owned by the service server, is now owned by
the requesting server. This call should be made only by the name and environ-
ment servers.

PARAMETERS

service_request
[in scalar] Request port to the service server.

service_desired
[in scalar] Send right to the port naming the server being registered.

service_granted
[out scalar] Receive right to the port naming the server being registered.

RETURN VALUE

KERN_SUCCESS
The requested service port was returned.

KERN_FAILURE
service_desired does not name a known service or the service has al-
ready been registered.

RELATED INFORMATION
Functions: service_waitfor.

Mach 3 Server Writer’s Interfaces 93

service_waitfor

service_waitfor

Function — Wait for a base Mach server to be registered

LIBRARY
libmach.a

#include <servers/service.h>

SYNOPSIS

kern_return_t service_waitfor
(mach_port_t service_request,
mach_port_t service_desired);

DESCRIPTION
The service_waitfor function suspends and does not return until the specified
server checks-in to the service server.

PARAMETERS

service_request
[in scalar] Request port to the service server.

service_desired
[in scalar] Send right to the port naming the server desired.

RETURN VALUE

KERN_SUCCESS
The requested service has registered.

KERN_FAILURE
service_desired does not name a known service.

RELATED INFORMATION
Functions: service_checkin.

94 Mach 3 Server Writer’s Interfaces

Service Server

Mach 3 Server Writer’s Interfaces 95

APPENDIX A C Language Functions

The ANSI C run-time function set includes functions that invoke operating system func-
tionality (such as file operations). When writing a Mach server, though, especially when
the server is the server that provides this operating system functionality, these functions
will not be available.

If the server is being linked against libmach.a, which assumes the existence of the vari-
ous Mach servers and a BSD server in many cases, the server would also be linked
against the system’s standard libc.a as well. Such a server may well also link against
libthreads.a, which defines the C-threads package. This libthreads library must be
linked before libmach or libc.

If, however, the server is intended to be a stand-alone server not dependent on these other
servers, it would be linked against libmach_sa.a (and would not be linked with libc.a).
In this case, the various C run-time functions are generally not available.

libmach_sa.a

Some C language functions of general utility that can be implemented without additional
server support are provided in libmach_sa.a and listed here.

The following string functions are provided, exactly as in ANSI/K&R C:

bcopy blkclr bzero memcpy strcatstrcmp
strcpy strlen strncpy

The following variables are defined by crt0.o (in libmach_sa.a):

environ errno

96 Mach 3 Server Writer’s Interfaces

C Language Functions

The following C functions in libmach_sa.a, because of the nature of the stand-alone en-
vironment, differ from their normal counterparts as follows:

_start
The _start function performs C run-time, C thread, MIG and Mach related task start-up
functions. This call occurs automatically when a task starts.

exit
The exit function terminates the calling task. It is equivalent to task_terminate (task_-
self()).

longjmp
The libmach_sa longjmp function differs from its C counterpart in that it does not ma-
nipulate signal mask state.

setjmp
The libmach_sa setjmp function differs from its C counterpart in that it does not manip-
ulate signal mask state.

libthreads.a

Either a stand-alone server or a dependent server may link against libthreads.a. Beside
threads themselves, the threads library also provides the following C language area relat-
ed functions, redefined to properly handle multiple threads:

free malloc realloc

libmach.a

In general, libmach.a does not define any C language functions, assuming the existence
of libc.a. A small handful of functions are defined or redefined as listed here.

atoh
This additional function, in the spirit of atoi, converts a hexadecimal string of characters
digits (0 to 9, A to F and a to f) into a binary integer.

brk
This function is not implemented.

fork
The fork function is extended to call mach_init in the child process.

Mach 3 Server Writer’s Interfaces 97

libmach.a

sbrk
This function is defined purely in terms of vm_allocate.

vfork
vfork is redefined to be the same as fork .

98 Mach 3 Server Writer’s Interfaces

C Language Functions

Mach 3 Server Writer’s Interfaces 99

APPENDIX B Data Structure Definitions

This appendix discusses the specifics of the various structures used as a part of the serv-
er’s various interfaces. This appendix does not discuss all of the various data types used
by the server’s interfaces, only the fields of the various structures used.

100 Mach 3 Server Writer’s Interfaces

Data Structure Definitions

mig_reply_header

Structure — Defines the true type of information passed in and out of
mach_msg_server

FILE
<mach/mig_errors.h>

SYNOPSIS
[1] typedef struct
[2] {
[3] mach_msg_header_t Head;
[4] mach_msg_type_t RetCodeType;
[5] kern_return_t RetCode;
[6] } mig_reply_header_t;

DESCRIPTION
The mig_reply_header structure defines the format of the data interface be-
tween mach_msg_server and the various MIG generated servers it calls.

FIELDS

Head
The actual Mach IPC message

RetCodeType
Not used

RetCode
A return code to mach_msg_server, indicating the disposition of the
return message. Refer to the Server Writer’s Guide for a detailed expla-
nation.

RELATED INFORMATION
Functions: mach_msg_server.

Data structures: mach_msg_header.

Mach 3 Kernel Interfaces 101

APPENDIX C Error Return Values

This appendix lists the various kernel return values.

An error code has the following format:

• system code (6 bits). The err_get_system (err) macro extracts this field.

• subsystem code (12 bits). The err_get_sub (err) macro extracts this field.

• error code (14 bits). The err_get_code (err) macro extracts this field.

The various system codes are:

• err_kern —kernel

• err_us — user space library

• err_server— user space servers

• err_mach_ipc — Mach-IPC errors

• err_local — user defined errors

A typical user error code definition would be:

#define SOMETHING_WRONG err_local | err_sub (13) | 1

NETMEMORY_BAD_PARAMETER
Invalid parameter supplied

NETMEMORY_RESOURCE
The netmemory server could not allocate sufficient resources

102 Mach 3 Kernel Interfaces

Error Return Values

NETMEMORY_SUCCESS
Operation succeeded

NETNAME_NOT_CHECKED_IN
No server is known by the given name.

NETNAME_NOT_YOURS
An attempt was made to change the registration of a server and the supplied sig-
nature value did not match.

NETNAME_SUCCESS
The name server operation was successful.

Mach 3 Server Writer’s Interfaces 103

APPENDIX D Index

C Language Functions 95
C Thread Functions. 31
Data Structure Definitions 99
Error Return Values 101
Index . 103
Interface Descriptions 1
Interface Types 2
Introduction. 1
Library Support Functions 5
MACH_PORT_VALID 6
Name Server 77
NetMemory Server 85
Parameter Types 3
Service Server 91
Special Forms 3
condition_alloc 32
condition_broadcast 33
condition_clear 34
condition_free 35
condition_init 36
condition_name. 37
condition_set_name 38
condition_signal 39
condition_wait. 40
cthread_count 42
cthread_data 43
cthread_detach 44
cthread_exit . 45

cthread_fork . 46
cthread_init . 47
cthread_join . 48
cthread_kernel_limit 49
cthread_limit 50
cthread_mach_msg 51
cthread_msg_active 53
cthread_msg_busy 54
cthread_name 55
cthread_self . 56
cthread_set_data. 57
cthread_set_kernel_limit 58
cthread_set_limit 59
cthread_set_name. 60
cthread_stack_size 61
cthread_unwire. 62
cthread_wire. 63
cthread_yield 64
environment_port. 7
libmach.a . 96
libmach_sa.a. 95
libthreads.a. 96
mach_device_server_port 8
mach_error . 9
mach_error_string 10
mach_error_type 11
mach_init . 12
mach_msg_destroy 13

104 Mach 3 Server Writer’s Interfaces

Index

mach_msg_server 14
mach_privileged_host_port 16
mach_task_self. 17
mig_dealloc_reply_port 18
mig_get_reply_port 19
mig_init . 20
mig_reply_header 100
mig_reply_setup. 21
mig_strncpy . 23
mutex_alloc . 65
mutex_clear . 66
mutex_free . 67
mutex_init . 68
mutex_lock. 69
mutex_name. 70
mutex_set_name 71
mutex_try_lock 72
mutex_unlock. 73
name_server_port. 24
netmemory_cache 86
netmemory_create 88
netmemory_destroy 90
netname_check_in 78
netname_check_out 80
netname_look_up. 82
netname_version 84
quit . 25
round_page. 26
service_checkin 92
service_port . 27
service_waitfor. 93
slot_name . 28
spin_lock . 74
spin_try_lock 75
spin_unlock . 76
trunc_page . 29
vm_page_size. 30

